Меню

Заземление фундамента частного дома



Заземление на фундамент в частном доме: плюсы, минусы и требования правил

Как правило, заземление в частном доме выполняется с помощью отдельного заземляющего устройства , так называемого «контура заземления» — трёх и больше стальных электродов, забитых в землю на глубину больше 2 метров.

Однако существует и другая возможность . Если ваш дом оснащён ленточным иди другим сплошным фундаментом достаточно большой площади, можно присоединиться к его арматуре и, таким образом специального заземлителя не потребуется . Как это правильно сделать и что об этом говорят правила — разбираем все плюсы и минусы !

Каким должен быть фундамент для заземления?

Для того, чтобы выполнять функцию заземляющего устройства, фундамент должен иметь :

  • глубину ниже уровня промерзания , чтобы зимой в мороз и летом в засуху всегда контактировать с влажной почвой;
  • внутреннюю арматуру (армирование), соединённую с помощью сварки — арматура, связанная проволокой не годится, так как имеет большое переходное сопротивление между арматуринами;
  • достаточно большую площадь соприкосновения с землёй: столбчатый фундамент для этой цели не годится.

Что говорят о заземлении на фундамент Правила?

Давайте заглянем в ПУЭ и посмотрим, что наши правила говорят о таком способе заземления.

Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно .

«Естественный» заземлитель, о котором говорится в данном пункте правил — и есть наш фундамент . Если внимательно прочесть весь текст становится понятно, что сделать вывод о том, можно использовать ваш фундамент для заземления или нет можно только после замера его сопротивления — оно должно быть не больше 30 Ом (норма для повторного заземления в сети 380 Вольт — пункт 1.7.103 ).

И, для самых недоверчивых, ещё один пункт правил, который прямо указывает на фундамент, как на способ заземления ( 1.7.109 ):

В качестве естественных заземлителей могут быть использованы:

1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений .

Как правильно присоединиться к фундаменту?

Лучше всего предусмотреть вывод ещё на этапе заливки , например вывести длинный болт , приваренный к арматуре за пределы бетонного объёма. Но если это не было сделано, не переживайте! Возьмите перфоратор и, в любом удобном для вас месте, начинайте долбить бетон — до тех пор, пока вы не наткнётесь на арматуру .

После этого, приварите к арматуре болт и присоедините к нему заземляющий провод, идущий в щиток (не меньше 10 квадрат для меди и 16 квадрат для алюминия), с помощью болтового наконечника. Для надёжности, смажьте наконечник токопроводящей смазкой и закрутите с дополнительной гайкой.

Не забудьте, что после присоединения, нужно замерить сопротивление заземления с помощью специального прибора. Если у вас его нет, вызовите электрика — это недорого, но необходимо.

Источник

Заземление в подвале частного дома — возможно ли это?

При возведении частного дома на относительно небольшом участке нередко возникает проблема размещения заземления. Часто вблизи благоустроенного дома просто не найти необходимого места для создания заземляющего устройства. В то же время в подвале имеется грунт, в который можно закопать заземление.

Читайте также:  Как залить полукругом фундамент

Мало того, в подвале зачастую влажно, и земля там не замерзает. Это позволяет относительно недорогим способом обеспечить надёжное заземление круглый год, не углубляясь до слоёв грунта, которые не промерзают. К тому же из подвала проще провести провод к щитку, расположенному на первом этаже.

В общем, на первый взгляд размещение заземления в подвале — со всех сторон удачное решение. Настолько удачное, что начинаешь сомневаться — а нет ли здесь подвоха? Допустимо ли такое расположение заземления с точки зрения действующих норм безопасности? И, если да, то какие существуют ограничения?

Классический вариант обустройства заземления — контур вокруг дома, образованный соединёнными друг с другом заземляющими штырями определённой длины. Контур отстоит от стен дома примерно на 1,5 м.

При этом заземление электрооборудования в доме и молниезащиту, как правило, объединяют, и данная схема позволяет это сделать. Но чрезвычайно плотная застройка пригородов крупных мегаполисов заставляет пересмотреть такой неэкономичный вариант.

Что говорит ПУЭ о заземление в подвале частного дома?

Электроснабжение частных домов, осуществляется напряжением менее 1000 В переменного тока, применяется глухозаземленная нейтраль. Для такого варианта ПУЭ не нормирует расстояние между контуром заземления и стенами. Для однофазной сети 220 В или трехфазной с линейным напряжением 380 В нормируется разве что сопротивление заземления, которое не должно превышать 30 Ом в течение всего года (в случае отсутствия газового водонагревательного котла и источников тока). Подробнее о необходимом значении сопротивления заземляющего устройства можно почитать на специальной странице нашего сайта.

Отсюда, в свою очередь, вытекает, возможность, не нарушая правил ПУЭ, разместить контур заземления внутри периметра здания. А это как раз и есть размещение заземления в подвале. Такое заземление делают, когда в подвале ещё нет стяжки. При этом подвал должен быть предварительно полностью очищен от строительного мусора. Ещё более удобный способ монтажа — закладывать заземление ещё на этапе строительства здания.

Здесь, следует отметить первый недостаток заземления в подвале — сложность обслуживания. Для любых ремонтных работ придется вскрывать бетон. Впрочем, если бетонную стяжку не делать, а использовать иные способы покрытия пола в подвале, обеспечивающие его легкую разборку и сборку, то этот недостаток несущественен. Другой путь решения проблемы — использование модульных систем заземления из стойких к коррозии материалов. Такие системы собираются, как конструктор, из готовых элементов, изготовленных на заводе, служат долго и, как правило, не требуют обслуживания долгие годы. Примером такого заземления является модульная система ZANDZ. Ее отличительной особенностью является медное покрытие стальных деталей, нанесенное не простым химическим способом, а способом электролитического осаждения. При правильной установке такое заземление прослужит порядка 100 лет. Также высокой надёжностью характеризуются безмуфтовые стержни Galmar. Эти стержни так же изготовлены из стали, покрытой медью электролитическим способом, но при их изготовлении применяется ковка. На стыке устанавливается специальная втулка из нержавеющей стали, которая в процессе забивания стержня в землю плотно садится на кованые концы стержней. В итоге обеспечивается надёжное соединение элементов заземления.

Читайте также:  Битумные мастики для деревянных фундаментов

Противоречия с СО 153-34.21.122-2003

Вопросы молниезащиты зданий в России регулируются документом СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций». Согласно этому документу, заземление электроустановок и заземление молниезащиты здания должны быть совмещены. При этом для заземления системы молниезащиты устанавливаются строгие требования — контур заземления должен быть внешним и отстоять от стен здания не менее, чем на 1 м. Это нужно, чтобы избежать появления внутри здания опасного шагового напряжения при ударе молнии.

При невозможности совмещения заземлений для электроустановок и молниезащиты, они должны быть соединены системой уравнивания потенциалов. Но при этом заземление для молниезащиты все равно должно быть размещено вне здания, как того требует инструкция. Таким образом, придется, в дополнение к заземлению в подвале, делать ещё и заземление по периметру. А это сводит на нет экономическую выгоду от размещения заземления в подвале.

Но все же есть способ ограничиться только заземлением в подвале. Для частного дома небольшой высоты расположенного в непосредственной близости от естественных молниеотводов (таковыми могут являться вышки сотовой связи, высокие линии электропередач и т.п.) собственный громоотвод может не требоваться, и, соответственно, для электроустановок можно использовать заземление, установленное в подвале. Безусловно, для больших особняков такой подход неприемлем, но применительно к ним он не нужен — бюджет стройки там совсем иной и нерационально экономить на обустройстве заземления.

Важно помнить, что на вопрос требуется молниезащита или нет, могут ответить только расчёты, нельзя оценивать необходимость защиты от молний «на глазок».

Выводы

Заземление, установленное в подвале частного дома, представляет собой техническое решение, которое обходится значительно дешевле в строительстве, чем контур заземления, вынесенный за периметры дома. Такое решение будет безопасным и допустимым нормативами только в том случае, если здание не имеет собственной системы молниезащиты.

Источник

Фундаментные заземлители (Часть 1)

Повсеместность использования на территории Польши фундаментных заземлителей – это результат требования, которое введено Распоряжением Министра инфраструктуры от 12 апреля 2002г. [2] касательно технических условий, которым должны отвечать здания и их расположение. Согласно §184, абзац 1 [2]: «В качестве заземлителей электрической системы следует использоватьметаллические конструкции зданий, арматуру фундаментов, а также другие металлические элементы, размещённые в неармированных фундаментах, представляющих собой искусственный фундаментный заземлитель».

Применение фундаментных заземлителей рекомендуется также в нормативных документах, касающихся как электрических, так и молниезащитных систем. Главные причины того, что специалисты отдают предпочтение такому заземлителю, связаны с легкостью и низкой стоимостью их выполнения, хорошим контактом фундамента с почвой, стабильностью его активного сопротивления во времени (зависимость удельного сопротивления фундамента от изменений температуры и влажности незначительна) и максимальным использованием его поверхности для рассеивания в грунте токов заземления.

Учитывая, что фундаментный заземлитель состоит из металлических элементов, залитых бетоном в фундаменте строительного объекта, для обеспечения непрерывности передачи тока в такой конструкции следует обращать особое внимание на качество соединения металлических элементов. В строительной практике арматурные стержни железобетонных конструкций соединяются преимущественно с помощью вязальной проволоки (рис. 5).

Читайте также:  Водонасыщенные слабые грунты фундаменты

Рис. 5. Соединение арматурных стержней с помощью вязальной проволоки (с согласия RST sp.j.)

В связи с этим, если фундамент должен быть эффективно использован как естественный заземлитель объекта, соединения арматуры фундамента должны быть низкоомными (с низким сопротивлением). Для получения определенных электрических соединений арматурных стержней рекомендуется комплектовать фундамент дополнительной внутренней ячеистой сетью, выполненной из стержней или полосового металла (рис. 6) и связанной со сталью арматуры с помощью винтовых зажимов. Ещё более прочными являются сварные соединения.

Все мероприятия, связанные с дополнительным соединением арматурных стержней, должны быть согласованы с конструктором фундамента, чтобы удостовериться, что прочность фундамента соответствует требованиям проекта.

Существенное преимущество фундаментных заземлителей – стабильное во времени активное сопротивление заземления. Этот вопрос был хорошо описан на примере строительных объектов в работе [6]. На стабильность активного сопротивления фундаментного заземлителя влияет то, что обычно фундаменты зданий окружены грунтом с меньшим удельным сопротивлением, чем поверхностные слои, причём удельное сопротивление более глубоких слоев грунта меньше зависит от времени года и погодных условий. Фундаментный заземлитель в зданиях с несколькими подземными этажами расположен под самым низким этажом, поэтому на таких глубинах изменения температуры и влажности почвы в течение года настолько незначительны, что ими можно пренебречь.

Соединение фундаментных заземлителей с дополнительными заземлителями

Использование фундамента как единственного элемента заземлителя наталкивается на определенные ограничения, связанные с его размерами или результирующим активным сопротивлением заземления. Так, в случае объектов, требующих молниезащиты, установленной на фундаменте с небольшой площадью поверхности, например таких, как вышки антенн, частные дома или небольшие технические объекты, может оказаться, что критерий минимальных размеров фундамента не был выполнен. Это значит, что средний радиус равновеликой поверхности re территории, охваченной фундаментным заземлителем, может не отвечать условию

требуемому в стандарте по молниезащите PN-EN 62035-3. Для III и IV уровней молниезащитной системы, типичной для таких объектов, необходимая минимальная длина заземлителя l1 составляет 5 м (рис. 2), что соответствует поверхности

Малые фундаментные заземлители

Кроме того, в специальных объектах, например таких, как отдельно стоящие распредустройства или киосковые КТП, фундаментный заземлитель из-за малого объема фундамента может оказаться недостаточным решением для обеспечения требуемого малого активного сопротивления заземления.

Более того, после подключения всех обслуживаемых устройств к объекту, в котором применен фундаментный заземлитель, измерение активного сопротивления заземления может существенно усложниться или его придется выполнять вручную вследствие эксплуатационных осложнений. На практике эта проблема связана с отсутствием соответствующих контрольно-измерительных соединений, а также с невозможностью отключения от заземлителя обслуживаемых устройств на время измерения активного сопротивления заземления.

Указанные проблемы с использованием фундаментного заземлителя можно успешно решить, применив дополнительные искусственные заземлители, которые дают возможность выполнить условие re ≥ l1 или получить соответствующее активное сопротивление заземления. Пример такого решения для небольшого фундаментного заземлителя внешней трансформаторной станции проиллюстрирован на рис. 7. Добавление подобным образом одного или нескольких вспомогательных заземлителей с соответствующими контрольными зажимами облегчит выполнение периодических измерений активного сопротивления фундаментного заземления.

Источник