Меню

Виброизоляционные материалы для фундаментов



Виброзащита фундаментов

Вопрос виброизоляции фундаментов стал актуальным в связи с возросшими требованиями к комфортности жилых, коммерческих, административных и офисных зданий. Отдельно рассматривается вибрационная безопасность промышленных объектов.

Различают две группы источников вибраций:

  • Внешние источники — большегрузный автомобильный транспорт, лини метрополитена и железной дороги, трамвайные пути.
  • Внутренние источники — насосные и климатические системы высотных зданий, размещенные в технических подвалах.

При отсутствии виброизоляции внутренние источники становятся внешними для других сооружений, т.к. низкочастотные вибрации имеют большую длину волны и распространяются на большие расстояния.

Для снижения вибрации используют:

  • Специальные строительные технологии. Напр., монолитные конструкции фундамента снижают вибрационную нагрузку на 5…8 дБ в сравнении с другими типами.
  • Экранирование упругими элементами по подземному контуру и бетонному основанию.
  • Упругая развязка между цокольным фундаментом и несущими стенами или колоннами.
  • «Плавающий» пол для технических помещений, на котором размещают источник вибрации (напр., турбина, генератор с автономным приводом, климатическая установка).

При значительной вибрационной нагрузке применяют комплексный подход.

Строительные компании применяют эластомеры Sylomer ® и Nowelle ® , которые до сих пор не сертифицированы в государственных нормативных документах. Компания Виброрез-Н предлагает инновационный композитный материал на основе резиновой крошки. Марки материала с рабочей нагрузкой 2 и 4 т/м 2 прошли испытания в НИИСФ РАСН и получили положительный отзыв.

Способы виброзащиты с помощью композитных материалов

Различают три основных технологии изоляции фундамента от внешних и внутренних вибрационных воздействий:

  • Точечные подложки. Применяются для изоляции отдельных элементов строительной конструкции, которые размещены на плите или полу монолитного фундамента при нагрузках низкой интенсивности периодического характера (напр., ветровая нагрузка, ЖД пути с низкой интенсивностью движения, путепровод, несущие колонны и пустотелые опоры).
  • Ленточные подложки. Применяются для изоляции плит или пола монолитного фундамента при вибрационных нагрузках средней интенсивности. Полосы укладывают по длинной стороне пола, вдоль блочного фундамента и под потолочную плиту подвала.
  • Сплошная подложка. Применяется в условиях интенсивной вибрационной нагрузки (напр., при возведении здания над линией метрополитена, вблизи ЖД путей, при возведении промышленных зданий).

Во всех случаях рекомендуется устанавливать противовибрационную прокладку между фундаментом и грунтом по контуру для гашения внешних или внутренних вибраций. При укладке защиты на отсыпку применяют гидроизоляцию пленочного типа, т.к. между пластинами образуются зазоры. Возможен вариант использования пластин в качестве гидроизоляции, для чего стыки заполняют замазкой на основе полиуретанового клея. Толщина подложек должна обеспечивать требования СН 2.2.4/2.1.8.566-96. Конструкции, размещаемые на подложках должны иметь высокую собственную жесткость.

Достоинства виброизоляции «Виброрез-Н»

Компания Виброрез выпускает пластины с габаритами 2000х1000х20 мм. Допускается укладка в 2…4 слоя на клеевую основу с промазкой и перекрытием швов. В этом случае отдельная гидроизоляция не требуется.

Виброизоляционный материал Виброрез-Н на строительном рынке появился недавно. Специалисты компании предоставят необходимую информацию об условиях оплаты, доставки или особенностях использования материала в качестве виброизоляционной подложки. Особо отметим, что стоимость Виброреза-Н при прочих равных условиях в 1,5…3 раза ниже зарубежных эластомеров за счет использования вторичного сырья.

Антивибрационные свойства композитного материала Виброрез-Н сохраняются в широком диапазоне статистических нагрузок. Коэффициент механического рассеивания энергии колебаний составляет 0,25…0,32 за счет движения частиц резиновой крошки на макро и микро уровне при статистической нагрузке до 11 т/м 2 . Дополнительным фактором гашения акустической (волновой) составляющей является образование вторичных, отраженных от сжатых гранул, волн. Увеличение нагрузки на вспененные эластомеры конкурентов (Silomer, Nowelle, BSW) приводит к необходимости уменьшать размеры закрытых газонаполненных пор, что увеличивает плотность, снижает коэффициент рассеивания и приводит к повышению стоимости в пересчете на куб. м. По требованиям к химической стойкости или диапазону рабочих температур «Виброрез-Н» не уступает эластомерам.

Более подробная теоретическая, техническая информация и сравнительный анализ размещена на сайте.

Будущему заказчику

До заказа рекомендуется заполнить форму обратной связи, в которой указать:

  • Особенности проекта конструкции фундамента.
  • Характеристики грунта.
  • Проектная и/или существующая вибрационная нагрузка (состав оборудования внутри здания и наличие внешних источников вибрации).
  • Планируемый способ изоляции фундамента (точечный, ленточный или сплошной).
Читайте также:  Смета мониторинг осадки фундамента

После обработки запроса специалистами будут даны рекомендации.

Источник

Виброизоляция фундаментов

Одним из наиболее эффективных мероприятий, позволяющим эффективно защищать здания от воздействия вибрации является устройство зданий на упругих опорах. Этот прогрессивный метод защиты зданий позволяет эффективно снизить передачу вибраций. Для устройства упругих прокладок используются специальные материалы, которые дают возможность проектировщику создавать различные конструкции изолирующей опоры, как то: полноплоскостную, ленточную или точечную (рис.31, 32, 33).

Применение материала SYLOMER® например, исключает наличие жестких требований относительно того, в каком месте здания (конструкции) должна находиться упругая прослойка. Упругое разделение осуществляется там, где это наиболее благоприятно для проектирования. Свойствами, необходимыми для реализации эффективной виброзащиты здания, материал обладает уже «сам по себе». Он характеризуется объемной сжимаемостью, т.е. даже покрытый оболочкой материал не теряет своей упругости, отличается благоприятным соотношением динамической и статической жесткостей, не подвержен гидролизу, а также устойчив к воздействию обычно встречающихся на стройке химических соединений, разбавленных щелочей и масел. Воздействие влаги на статическую и динамическую жёсткость очень незначительно даже при полном погружении материала в воду.

Как уже говорилось выше, опора на материал, снижающий вибрацию, может быть: полноплоскостной, ленточной или точечной. Определение того, какой вид опор является для здания наиболее благоприятным, зависит от требуемой собственной частоты и особенностей конструкции. Примыкающие элементы конструкций, такие как стены или потолки, могут быть выполнены как из монолитного бетона, так и из сборных блоков. Изготовленная из монолитного бетона площадь опоры обычно используется в качестве несъемной опалубки.

Устройство перекрытий на упругих опорах обычно производится с помощью армированных плит. Для полной изоляции здания от воздействия вибраций необходимо всю поверхность стен, расположенных над упругой опорой и соприкасающуюся с грунтом, отделить упругими прокладками.

Преимуществами полноплоскостной опоры являются простота строительного исполнения и минимальный риск образования акустических мостиков из-за ошибок при укладке матов. Разделение обычно устраивается между плитой пола и основанием или слоем бетонной подготовки. Для большей эффективности основание должно быть как можно более жёстким. Воздействующие на здание нагрузки, распределяясь на большей площади, благодаря полноплоскостной опоре, передаются на основание. Специальные конструкции для перераспределения нагрузок на ленточные или точечные опоры не требуются. Структурных колебаний плиты пола при реализации полноплоскостной опоры в значительной мере удаётся избежать.

Рис.31 Устройство полноплоскостной опоры

Применение ленточной опоры рекомендуется при реализации линейной передачи нагрузки. Упругая прослойка при этом располагается, как правило, в области фундамента или непосредственно под перекрытием подвала. Пол или потолок подвала, а также стены над ними можно монтировать непосредственно на ленточных опорах. Для эффективной изоляции структурных вибраций примыкающие к упругой прослойке элементы конструкций должны быть очень жёсткими и не обладать выраженными резонансными свойствами.
Преимуществом расположения упругой прослойки в области фундамента является возможность сооружения здания традиционными способами после завершения работ в области фундамента. Появление акустических мостиков вследствие строительных дефектов практически исключается.

При размещении упругой прослойки под плитой перекрытия подвала изоляция стен подвала не требуется. Однако все соединения между подвалом и элементами здания на упругих опорах (например, лестницы и технические проемы) нужно отделить упругими элементами.

Рис.32 Устройство ленточной опоры

Упругое разделение точечного вида рекомендуется устраивать в конструкциях на свайном основании или при опирании на отдельные стойки/колонны. Приложенная нагрузка является определяющей при выборе типа упругого материала. Оптимальное сжатие выбранного типа материала достигается изменением площади опоры с помощью свайных наголовников. Для точечной опоры, как правило, применяются материалы с высокими объёмными массами. Точно так же, как и при полноплоскостной и ленточной опорах, основание для опор, а также примыкающие элементы конструкций должны быть очень жёсткими. (По материалам фирмы Getzner®),

Рис. 33 Устройство точечной опоры

Отмостка

Чтобы предупредить проникновение дождевых и талых вод в подземные части здания, осуществляют планировку поверхности участка под застройку, создавая необходимый уклон для отвода поверхностных вод от здания. А по периметру здания устраивают отмостку.

Читайте также:  Куда класть монетки при заливке фундамента

Отмостка располагается на уровне земли и служит для защиты фундамента от атмосферных осадков. Ширина отмостки, в зависимости от назначения здания или сооружения и от грунтовых условий, может быть от 0,5 до 2,0м, но не менее чем на 200мм шире карниза, чтобы вода, стекающая с крыши, не размывала грунт и не застаивалась под домом.

Отмостка должна иметь поперечный уклон (от дома или сооружения) (1:5) и может быть выполнена с продольным уклоном не менее 0,03. В этом случает отмостка должна обязательно заканчиваться бордюрным камнем.

По краю отмостки можно устроить водоотводную канавку. Отмостку также можно закончить бордюрным камнем. В этом случае вода будет стекать вдоль здания и сходить в дрену или ливневую канализацию. Если здание имеет значительную длину, то выполняется разуклонка отмостки и дрены должны быть предусмотрены по двум углам здания.

Отмостка по периметру здания или сооружения независимо от конструкций одежды (асфальтовая, бетонные плиты, монолитный бетон, булыжный камень, гравий, щебень) должна иметь подготовку из местного уплотненного грунта или мягкой уплотненной глины толщиной слоя не менее 15см Отметка бровки отмостки должна превышать планировочную отметку не менее чем на 0,05м.

Отмостка выполняется из бетона со швами, компенсирующими температурные расширения.

Рис. 34 Варианты устройства отмосток

Пандус

Для обеспечения доступности маломобильных лиц в местах перепада уровней (превышающего 4см между горизонтальными участками пешеходных путей или пола в зданиях и сооружениях) следует предусматривать устройство пандусов.

Конструкции пандусов и их ограждений следует выполнять из несгораемых материалов с пределом огнестойкости не менее 2 часов.

В исключительных случаях допускается предусматривать винтовые пандусы, величина внутреннего радиуса которых рассчитывается. Длина промежуточных горизонтальных площадок винтового пандуса по внутреннему его радиусу должна составлять не менее 2 м.

Уклон пандуса в зависимости от его длины не должен превышать величин, указанных в приложении ВСН 62-91*.

По внешним боковым краям пандуса следует предусматривать бортики высотой не менее 5 см.

По обеим сторонам пандуса должны предусматриваться ограждения высотой не менее 0,9 м с поручнями. Поручни должны быть двойными на высоте 0,7 и 0,9 м, а для детей – на высоте 0,5 м. Длина поручней должна быть больше длины пандуса с каждой стороны не менее чем на 0,3 м.

Пандус, служащий путем эвакуации со второго и вышележащих этажей должен быть непосредственно связан с выходом наружу из здания или сооружения.

Рис.35 Фрагмент плана подземного гаража с рампой и пандусами

Также пандусы устраиваются в промышленных и общественных зданиях и сооружениях для возможности заезда по ним автомобильного транспорта при наличии перепада между отметкой пола и отметкой земли. Уклон пандуса должен иметь соотношение 1:7. Покрытие пандусов (рамп) должно исключать скольжение.

Рампы в автостоянках должны отвечать следующим требованиям:

— продольный уклон закрытых прямолинейных рамп по оси полосы движения должен быть не более 18%, криволинейных рамп – не более 13%, продольный уклон открытых (не защищенных от атмосферных осадков) рамп – не более 10%;

— поперечный уклон рамп должен быть не более 6%;

— на рампах с пешеходным движением должен предусматриваться тротуар шириной не менее 0,8 м.

Фото … Пандус для маломобильных групп населения в г.Оломоуц

Деформационные швы

Здания большой протяженности подвержены деформациям под влиянием колебаний температуры наружного воздуха в течение года, неравномерных осадок грунта основания, сейсмических явлений и других причин. Во всех этих случаях в стенах, перекрытиях, покрытиях и других частях здания могут появиться трещины, резко снижающие прочность и эксплуатационные качества здания. Для предупреждения появления трещин в несущих и ограждающих конструкциях предусматривают деформационные швы, разрезающие здание на отсеки.

Деформационные швы призваны уменьшать изгибающие нагрузки на конструкционные элементы в местах возможных наибольших деформаций и сделать деформации в узле «нормальными».

Читайте также:  Как ремонтировать кирпичный фундамент

Обычно деформационные швы предусматривают в зданиях: со сложной формой фундаментов, в конструкциях примыканий подземных гаражей к основному зданию; с большой протяженностью; разноэтажных, между основным зданием и пристройкой, стоящей на отдельном фундаменте.

В сооружениях:между чашей бассейна и остальной конструкцией здания; на открытых многоэтажных автостоянках и др.

Рис. 36 Некоторые варианты устройства деформационных швов

В зависимости от назначения применяют следующие деформационные швы:

Температурные швы делят здание на отсеки от уровня земли до кровли включительно, не затрагивая фундамента, который, находясь ниже уровня земли, испытывает температурные колебания в меньшей степени и, следовательно, не подвергается существенным деформациям. Расстояние между температурными швами принимают в зависимости от материала стен и расчетной зимней температуры района строительства.

Отдельные части здания могут быть разной этажности. В этом случае грунты основания, расположенные непосредственно под различными частями здания, будут воспринимать разные нагрузки. Неравномерная деформация грунта может привести к появлению трещин в стенах и других конструкциях здания. Другой причиной неравномерной осадки грунтов основания сооружения могут быть различия в составе и структуре основания в пределах площади застройки здания. Тогда в зданиях значительной протяженности даже при одинаковой этажности могут появиться осадочные трещины. Во избежание появления опасных деформаций в зданиях и уменьшения чувствительности к неравномерным осадкам одноэтажных и многоэтажных зданий устраивают вертикальные осадочные швы. Эти швы в отличие от температурных разрезают здание по всей их высоте включая фундаменты на отдельные части.

Для беспрепятственной осадки в зазоры между фундаментами вставляют доски, обернутые толем (или любым современным гидроизоляционным материалом). В зданиях с подвалами устанавливают доски с наружной стороны стены, вынимают раствор, и швы в этих местах заполняют битумом.

Рис.37 Осадочный шов

Если в одном здании необходимо использовать деформационные швы разных видов, их по возможности совмещают в виде так называемых температурно-осадочных швов.

Антисейсмические швы применяются в зданиях, строящихся в районах, подверженных землетрясениям. Они разрезают здание на отсеки, которые в конструктивном отношении должны представлять собой самостоятельные устойчивые объемы. По линиям антисейсмических швов располагают двойные стены или двойные ряды несущих стоек, входящих в систему несущего остова соответствующего отсека.

Усадочные швыделают в стенах, возводимых из монолитного бетона различных видов. Монолитные стены при твердении бетона уменьшаются в объеме. Усадочные швы препятствуют возникновению трещин, снижающих несущую способность стен. В процессе твердения монолитных стен ширина усадочных швов увеличивается; по окончании усадки стен швы наглухо заделывают.

Существует три типа сооружений по жесткости:

1. абсолютно гибкие (например, земляные насыпи. Для получения проектных отметок насыпи ее делают выше на величину ожидаемой осадки, т.е. придают насыпи строительный подъем);

2. абсолютно жесткие (не могут искривляться. Такие сооружения получают крен без деформации, например, дымовые трубы, доменные печи и т.п.)

3. обладающие конечной жесткостью (относятся большинство зданий и многие сооружения. Такие здания при неравномерной осадке получают искривления вследствие чего становится возможным образование трещин в несущих элементах. Отдельные здания обладают незначительной конечной жесткостью и их можно считать практически гибкими. Такие здания следуют за перемещениями грунта, и только значительные неравномерные осадки способны вызвать у них появление трещин. Это — невысокие одноэтажные здания с разрезными балками покрытия).

Фундаменты могут иметь следующие деформации — прогиб-выгиб, перекос, крен, кручение.

Неравномерность осадок здания может быть обусловлена неоднородностью основания, неодинаковой или неодновременной загрузкой фундаментов, динамическим воздействием на грунт основания, изменением уровня грунтовых вод в процессе эксплуатации.

На сегодняшний день наряду с традиционным устройством деформационного шва возможно устройство и эластичного шва. Эластичные деформационные швы обеспечивают:

· мягкий бесшумный проезд или проход по поверхности;

· высокую износостойкость и хорошее сцепление;

· короткое время устройства;

· высокую ремонтную пригодность;

· высокую надежность и долговечность.

Рис. 38 Конструкция эластичного деформационного шва:

Источник

Adblock
detector