Меню

Вибро фундаменты под оборудованием



Фундаменты под оборудование — особенности монтажа

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

  • Значительной массой – чем больше вес основания, тем выше сопротивляемость вибрации.
  • Повышенной прочностью – чем выше стойкость к статическим и динамическим нагрузкам, тем больше период эксплуатации и самого фундамента, и смонтированного на основании оборудования.
  • Высокой устойчивостью к агрессивным средам – чем выше инертность хотя бы верхних слоев фундамента, тем дольше он прослужит в роли основания для станка или механизма.

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

  • Бесподвальное основание плитного типа, гасящее вибрацию своей массой. Такие фундаменты можно залить в опалубку только на первом этаже цеха. Подобная конструкция обойдется в значительную сумму, поскольку на сооружение цельного основания плитного типа тратят максимальный объем строительного материала. Однако самые крупные станки и механизмы монтируют только на таких фундаментах.
  • Подвальное основание-перекрытие, монтируемое на втором этаже и выше. Такой фундамент гасит вибрацию, передавая колебания на каркас самого цеха (посредством контакта с межэтажным перекрытием). По сути – это такая же плита, только не залитая, а собранная из железобетонных изделий, установленных на балки межэтажного перекрытия. Подобное основание способно противостоять только статическим нагрузкам или вибрации с минимальной амплитудой.
  • Стенчатый фундамент, развивающий идею ленточного основания. Несущую нагрузку и вибрацию в данном случае принимают несущие стены или внутренние перегородки. Как правило, подобные фундаменты подводят под механизмы, расположенные на втором этаже цеха.
  • Основания рамного типа (с балочным ростверком). Такая конструкция выдерживает высокочастотную вибрацию. Поэтому в большинстве случаев фундаменты для ударных механизмов имеют «рамную» конструкцию. Ведь в опоры рамы можно вмонтировать демпферы, гасящие вибрацию.
Читайте также:  Толщина плиты столбчатого фундамента

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

  • Железобетона (методом заливки в опалубку).
  • Железобетонных блоков (методом сборки с перевязкой).
  • Металла (сборка свайной конструкции с рамным ростверком).
  • Железобетона и металла (бетонные сваи или блоки и металлический ростверк).

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

  • Константы условий работы (от 0,5 для кузнечного молота, до 1,0 для токарно-винторезного станка).
  • Константы осадки грунта (от 0,7 до 1,0 – в зависимости от влажности почвы).

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

  • Вначале следует определить месторасположение основания. Фундамент не должен соприкасаться со стенками, колоннами или внутренними перегородками самого здания. Минимальное расстояние от фундамента пресса до фундамента цеха равно 100 сантиметрам. Иначе вибрация перейдет на основание несущих стен, колон или перегородок.
  • После этого следует определить положение крепежных (фундаментных) болтов, фиксирующих станину пресса или станка. При этом нужно учитывать, что минимальное расстояние от края фундамента до оси болта рано 20 сантиметра. То есть, фундамент должен выступать за края станины, как минимум на 20-30 сантиметров.
  • Определив вышеупомянутые параметры можно приступать к земляным работам (рытью котлована). Причем глубина выемки грунта в не отапливаемом цеху равняется глубине промерзания + 25-40 сантиметров. В отапливаемом цеху глубина фундамента равняется 50-80 сантиметрам. Габариты самого котлована, равны ширине и высоте фундамента + глубина залегания подошвы. Ведь стенки котлована, как правило, обустраивают под наклоном в 45 градусов.
  • Завершив земляные работы можно заняться повышением несущей способности грунта, подсыпав на дно двухслойную песчано-гравиевую подушку (по 15-20 сантиметров на каждую фракцию).
  • Следующий этап – строительство опалубки, опоясывающей контур фундамента. Ее собирают из съемных металлических или деревянных щитов, соединенных поперечными стяжками.
  • На следующем этапе во внутреннюю полость основания вводят армирующий каркас (в основаниях для небольших станков можно обойтись без каркаса), а дно опалубки укрывают слоем гидроизоляции (рубероида). В особых случаях на дно основания укладывают особый материал, гасящий вибрацию (дубовый брус или что-то другое).
  • После этого внутреннюю полость заполняют бетоном, укладывая раствор слоями по 10-15 сантиметров.

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

  • В финале в верхний слой заливки вводят фундаментные болты с коническими или загнутыми торцами.
Читайте также:  Строить не перестроить плитный фундамент

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Источник

Виброзащита фундаментов

Вопрос виброизоляции фундаментов стал актуальным в связи с возросшими требованиями к комфортности жилых, коммерческих, административных и офисных зданий. Отдельно рассматривается вибрационная безопасность промышленных объектов.

Различают две группы источников вибраций:

  • Внешние источники — большегрузный автомобильный транспорт, лини метрополитена и железной дороги, трамвайные пути.
  • Внутренние источники — насосные и климатические системы высотных зданий, размещенные в технических подвалах.

При отсутствии виброизоляции внутренние источники становятся внешними для других сооружений, т.к. низкочастотные вибрации имеют большую длину волны и распространяются на большие расстояния.

Для снижения вибрации используют:

  • Специальные строительные технологии. Напр., монолитные конструкции фундамента снижают вибрационную нагрузку на 5…8 дБ в сравнении с другими типами.
  • Экранирование упругими элементами по подземному контуру и бетонному основанию.
  • Упругая развязка между цокольным фундаментом и несущими стенами или колоннами.
  • «Плавающий» пол для технических помещений, на котором размещают источник вибрации (напр., турбина, генератор с автономным приводом, климатическая установка).

При значительной вибрационной нагрузке применяют комплексный подход.

Строительные компании применяют эластомеры Sylomer ® и Nowelle ® , которые до сих пор не сертифицированы в государственных нормативных документах. Компания Виброрез-Н предлагает инновационный композитный материал на основе резиновой крошки. Марки материала с рабочей нагрузкой 2 и 4 т/м 2 прошли испытания в НИИСФ РАСН и получили положительный отзыв.

Способы виброзащиты с помощью композитных материалов

Различают три основных технологии изоляции фундамента от внешних и внутренних вибрационных воздействий:

  • Точечные подложки. Применяются для изоляции отдельных элементов строительной конструкции, которые размещены на плите или полу монолитного фундамента при нагрузках низкой интенсивности периодического характера (напр., ветровая нагрузка, ЖД пути с низкой интенсивностью движения, путепровод, несущие колонны и пустотелые опоры).
  • Ленточные подложки. Применяются для изоляции плит или пола монолитного фундамента при вибрационных нагрузках средней интенсивности. Полосы укладывают по длинной стороне пола, вдоль блочного фундамента и под потолочную плиту подвала.
  • Сплошная подложка. Применяется в условиях интенсивной вибрационной нагрузки (напр., при возведении здания над линией метрополитена, вблизи ЖД путей, при возведении промышленных зданий).
Читайте также:  Фундамент стаканного типа каталог

Во всех случаях рекомендуется устанавливать противовибрационную прокладку между фундаментом и грунтом по контуру для гашения внешних или внутренних вибраций. При укладке защиты на отсыпку применяют гидроизоляцию пленочного типа, т.к. между пластинами образуются зазоры. Возможен вариант использования пластин в качестве гидроизоляции, для чего стыки заполняют замазкой на основе полиуретанового клея. Толщина подложек должна обеспечивать требования СН 2.2.4/2.1.8.566-96. Конструкции, размещаемые на подложках должны иметь высокую собственную жесткость.

Достоинства виброизоляции «Виброрез-Н»

Компания Виброрез выпускает пластины с габаритами 2000х1000х20 мм. Допускается укладка в 2…4 слоя на клеевую основу с промазкой и перекрытием швов. В этом случае отдельная гидроизоляция не требуется.

Виброизоляционный материал Виброрез-Н на строительном рынке появился недавно. Специалисты компании предоставят необходимую информацию об условиях оплаты, доставки или особенностях использования материала в качестве виброизоляционной подложки. Особо отметим, что стоимость Виброреза-Н при прочих равных условиях в 1,5…3 раза ниже зарубежных эластомеров за счет использования вторичного сырья.

Антивибрационные свойства композитного материала Виброрез-Н сохраняются в широком диапазоне статистических нагрузок. Коэффициент механического рассеивания энергии колебаний составляет 0,25…0,32 за счет движения частиц резиновой крошки на макро и микро уровне при статистической нагрузке до 11 т/м 2 . Дополнительным фактором гашения акустической (волновой) составляющей является образование вторичных, отраженных от сжатых гранул, волн. Увеличение нагрузки на вспененные эластомеры конкурентов (Silomer, Nowelle, BSW) приводит к необходимости уменьшать размеры закрытых газонаполненных пор, что увеличивает плотность, снижает коэффициент рассеивания и приводит к повышению стоимости в пересчете на куб. м. По требованиям к химической стойкости или диапазону рабочих температур «Виброрез-Н» не уступает эластомерам.

Более подробная теоретическая, техническая информация и сравнительный анализ размещена на сайте.

Будущему заказчику

До заказа рекомендуется заполнить форму обратной связи, в которой указать:

  • Особенности проекта конструкции фундамента.
  • Характеристики грунта.
  • Проектная и/или существующая вибрационная нагрузка (состав оборудования внутри здания и наличие внешних источников вибрации).
  • Планируемый способ изоляции фундамента (точечный, ленточный или сплошной).

После обработки запроса специалистами будут даны рекомендации.

Источник