Меню

Вес фундамента от мощности двигателя



Расчет нагрузки на фундамент

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м 2 .
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м 2 .
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м 2 .
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м 2 .
Читайте также:  Заложение фундамента ниже уровня промерзания грунта

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

  1. Площадь перекрытий равна площади дома – 80 м 2 . В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м 2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м 2 .

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м 2 .
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м 3 .
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5: 43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м 2 .
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Читайте также:  Немецкая технология заливки бетонного фундамента

Таблица 6 – Удельная плотность материалов фундамента

  1. Площадь фундамента – 14,4 м 2 , глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м 3 .
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м 2 .

Расчет общей нагрузки на 1 м 2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R определяют по таблицам СНиП 2.02.01—83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м 2 =17 т/м 2 .
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R составляет 2,5 кг/см 2 , или 25 т/м 2 .

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Источник

9.5. ПРИМЕРЫ РАСЧЕТА КОЛЕБАНИЙ ФУНДАМЕНТОВ МАШИН С ДИНАМИЧЕСКИМИ НАГРУЗКАМИ (ч. 1)

Ниже приведены примеры расчетов массивных фундаментов на периодическую (гармоническую) и ударную нагрузки и пример расчета рамного фундамента на гармоническую нагрузку. Примеры расчетов фундаментов под машины можно найти в «Руководстве по проектированию фундаментов машин с динамическими нагрузками» [6].

Пример 9.1. Рассчитать фундамент лесопильной рамы. Расчет фундаментов лесопильных рам производится как для машин с кривошипно-шатунными механизмами по главе СНиП «Фундаменты машин с динамическими нагрузками». Целью расчета является определение размеров фундамента, соответствующих требованиям экономичности и обеспечивающих допустимый уровень колебаний.

Исходные данные: марка машины РД 76/6; масса машины 15 т; масса приводного электродвигателя 2 т; мощность приводного электродвигателя 90 кВт; частота вращения электродвигателя 720 мин –1 ; частота вращения главного вала nr = 320 мин –1 . Расчетные динамические нагрузки, координаты точек их приложения, координаты центра тяжести машины, размеры верхней части фундамента, диаметр, конструкция и привязка анкерных болтов и другие исходные данные для проектирования заданы в строительном задании завода — изготовителя машины на устройство фундамента. Схема нагрузок, действующих на фундамент, приведена на рис. 9.1. Допускаемые амплитуды горизонтальных и вертикальных колебаний фундамента для I гармоники должны быть не более 0,19 мм.

Решение. Конструкцию фундамента пилорамы принимаем массивной из монолитного железобетона. Фундамент состоит из нижней прямоугольной плиты размером 6×7,5 м и высотой 2 м, принятыми из условий расположения приводного электродвигателя, требований симметрии и оптимальной массы фундамента, и верхней скошенной части, принятой по технологическим условиям. Отметка засыпки грунта находится на уровне верха прямоугольной плиты. Материал фундамента — бетон марки М200, арматура — горячекатаная, круглая и периодического профиля, соответственно классов A-I и А-II.

Читайте также:  Фундаменты для сырой почвы

Схема масс элементарных объемов фундамента и машины с привязкой их к осям фундамента, проходящим через центр тяжести подошвы фундамента, приведена на рис. 9.1. Масса пилорамы m1 = 15 т; масса скошенной части фундамента m 2 = 22,25 т; масса прямоугольной части фундамента m3 = 216 т; масса электродвигателя с подбеточкой m4 = 2+18 = 20 т.

Полная масса фундамента

mf = 22,25 + 216 + 18 = 256,25 т.

Масса пилорамы и электродвигателя привода

Масса всей установки

Находим координаты центра тяжести установки по оси Z . Статические моменты масс элементов установки относительно оси, проходящей через подошву фундамента, будут:

т·м.

Расстояние от центра тяжести установки до подошвы фундамента

м.

Находим координаты по оси X . Расстояние до центра тяжести установки по оси X

м.

Координату центра тяжести установки по оси Y не определяем, так как эксцентриситет до оси Y весьма мал ( X (по направлению действия динамических сил).

В основании фундамента залегают пески средней крупности, средней плотности маловлажные с расчетным сопротивлением R = 350 кПа и модулем деформации E = 3·10 4 кПа. Проверяем условие (9.1) при γc = 1 и γc1 = 1. Среднее давление p = Q/A , где Q = mg , тогда

кПа 3 ;

Cφ = 2·44 140 = 88 280 кН/м 3 ;

Cx = 0,7·44 140 = 30 900 кН/м 3 .

Коэффициенты жесткости для естественного основания находим по формулам (9.8), (9.9) в (9.10), где Iφ = 6·7,5 3 /12 = 210,94 м 4

kz = 44 140·6·7,5 = 1 986 400 кН/м;

kx = 30 900·6·7,5 = 1 390 000 кН/м;

kφ = 88 280·210,94 = 18 623 000 кН/м.

Значения коэффициентов относительного демпфирования определяем по формулам (9.13) и (9.15):

; .

Расчетные динамические нагрузки (для первой гармоники возмущающих сил и моментов) определяем следующим образом:

тогда при Fv = 208 кН, Fh = 39 кН, e = 0,173 – 0,08 = 0,093 м и e1 = 5,95 – 1,516 = 4,434 м

M = 208·0,093 + 39·4,434 = 19,4 + 173 = 192,4 кН·м.

Амплитуды горизонтально-вращательных и вертикальных колебаний фундамента определяются по формулам:

;

;

;

.

Для вычисления по этим формулам амплитуд следует определить входящие в них дополнительные параметры:

с –1 ;

;

здесь значение θ = 1614,4 т·м 2 получено путем разбивки фундамента и машины на элементарные тела, вычисления для них собственных моментов инерции и добавления переносных моментов инерции, равных произведению масс элементарных тел на квадраты расстояний от их собственных центров тяжести до общего центра тяжести установки;

;

с –1 ;

кН·м ;

т·м 2 ;

с –1 ;

с –1 ;

;

;

;

;

.

; ;

;

;

;

;

;

;

;

;

;

;

;

.

Подставляя найденные параметры в соответствующие формулы находим:

= 1,2·10 –4 м = 0,12 мм;

Следовательно, параметры фундамента выбраны правильно.

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Источник