Меню

От чего зависит скорость развития осадки фундаментов



§ 24. Влияние размеров фундамента на осадку основания

Осадка основания при одном и том же давлении ро по подошве фундамента зависит от его заглубления в грунт и размеров в плане.

На рис. 4.3 показаны три фундамента, различающиеся шириной и заглублением в грунт, и для каждого из них построены эпюры рg, 0,2 pg и дополнительных давлений р. Значения ро для всех фундаментов одинаковы. Точка пересечения кривой, ограничивающей эпюру р для каждого фундамента, с прямой, ограничивающей эпюру 0,2 pg, определяет положение нижней границы активной зоны, грунта. Размеры da активных зон для всех трех фундаментов различны.

Сопоставим фундаменты, различающиеся глубиной заложения подошвы. Из рис. 4.3, а и б видно, что с увеличением этой глубины дополнительные давления р (на одинаковом расстоянии z от подошвы) и размер da активной зоны грунта уменьшаются. Следовательно, осадка основания с увеличением глубины заложения подошвы фундамента уменьшается.

Сопоставим теперь фундаменты, отличающиеся шириной подошвы. Из рис. 4.3, а и в видно, что с увеличением этой ширины дополнительные давления р и размер da активной зоны грунта увеличиваются. Следовательно, осадка основания с увеличением размеров подошвы фундамента возрастает.


Рис. 4.3. Зависимость размера активной зоны от ширины фундамента и его заглубления а — фундамент шириной b и глубиной заложения d; б — фундамент шириной b и глубиной заложения 2d; в — фундамент шириной 2b и глубиной заложения d

§ 25. Рост осадки во времени

Полную осадку основания можно разделить на две части: строительную и эксплуатационную. Строительной называют осадку, которая происходит в период строительства сооружения. Она, как правило, не является опасной, так как имеется возможность измерить ее и принять меры, если это требуется, к ликвидации ее последствий. Эксплуатационной называют осадку, которая проявляется после окончания строительства сооружения; такая осадка часто представляет опасность для нормальной эксплуатации сооружения, а иногда даже и для его сохранности.

Осадка основания вызывается уплотнением грунта под нагрузкой; при этом объем пор в грунте уменьшается, а содержащаяся в них несвязанная вода отжимается. В крупнообломочных и песчаных грунтах, обладающих высокими коэффициентами фильтрации, отжатие несвязанной воды протекает сравнительно быстро, поэтому осадка песчаных оснований стабилизируется еще в процессе строительства сооружений. В глинистых грунтах процесс стабилизации осадки может протекать в течение многих лет, а иногда и десятилетий.

Разработан способ определения процента консолидации, т. е. той части полной осадки основания, которая проявится через заданный промежуток времени после приложения нагрузки. Этот способ позволяет после вычисления полной осадки рассчитать ее строительную и эксплуатационную части. Однако таких расчетов в практике проектирования, как правило, не производят, ориентировочно принимая, что к концу строительства сооружения осадка фундаментов на песчаных грунтах, а также на глинистых грунтах, находящихся в твердом состоянии, полностью стабилизируется, а осадка фундаментов на глинистых грунтах, находящихся в пластичном состоянии, составляет 50% полной.

1. Какие различают виды деформаций основания?

2. Какие существуют методы расчета осадок?

3. Как определить конечную осадку основания?

4. В чем состоит сущность метода послойного суммирования при определении конечной осадки основания?

5. Какую толщину расчетных слоев грунта принимают при определении конечной осадки основания методом послойного суммирования?

6. Как влияют размеры фундамента на осадку основания?

Источник

Изменяется ли осадка фундаментов зданий с течением времени? От чего зависит осадка?

Осадки не заканчиваются за время строительства (исключение составляют лишь чистые пески). На процесс развития осадок во времени влияет как водопроницаемость грунтов, так и ползучесть скелета грунта, а также деформируемость всех компонентов, составляющих грунт (поровой воды, включений воздуха, паров и газов, органических веществ и т.п.).

Водонасыщенные пластичные и особенно текучепластичные (слабые) глинистые грунты дают наибольшие осадки, часто весьма медленно затухающие, и создают наибольшие затруднения для строителей. Осадки сооружений на этих грунтах могут достигать сотен сантиметров и протекать десятки и сотни лет.

Какая теория используется при определении осадки во времени и её предпосылки?.

Для полностью водонасыщенных грунтов наиболее широко применяемой в настоящее время теорией, позволяющей решать поставленные задачи, является теория фильтрационной консолидации грунтов.

Предпосылки теории фильтрационной консолидации:

1) рассматривается полностью водонасыщенные грунты;

2) скелет грунта принимается линейно деформируемым, напряжения в котором мгновенно вызывают его деформации;

3) грунт не обладает структурностью, и внешнее давление, прикладываемое к нему, в первый момент времени полностью передаётся на воду;

4) фильтрация воды в порах грунта полностью подчиняется закону Дарси.(см. вопрос)

Источник

Осадка фундамента: особенности оснований и виды нагрузок

При всех предупредительных информационных посылах, о том, что фундамент является не просто несущей конструкцией, а и гарантией устойчивости здания, все равно находятся желающие максимально сэкономить даже на этом элементе. Они забывают о том, что грунт сам по себе неоднороден, достаточно подвижен и очень бурно реагирует на грунтовые воды и подтопления, проявляя свое «нетерпение» явлениями пучинистости.

Несколько слов о фундаментах и видах нагрузок

Просматривая информацию о поведении грунта под различными фундаментами, бросается в глаза, что расчетная составляющая не может базироваться только на виде фундамента или только на виде почвы, в расчет берется также общая нагрузка на фундамент и поведение различных почв под воздействием этих нагрузок.

Для наглядности и понятности приведем несколько сравнительных классификаций.

Итак, фундамент может быть:

  • Несущий. Здесь комментарии излишни, несущий, значит, ответственен за все строение. Ярким примером является ленточный фундамент;
  • Комбинированный – в данном случае к функции опоры добавлена и сейсмозащита. Как правило, это лента + сваи;
  • Неглубокого заложения. А именно выше глубины промерзания; такие фундаменты характерны для нетяжелых строений, времянок и отдельно стоящих построек типа бани, гаража и сараев;
  • Глубокого заложения. Полноценный фундамент, как ленточный, так и сборной из плит, кирпича либо камня, размещении ниже уровня промерзания и может выдерживать нагрузку нескольких уровней или этажей;
  • Специальные. Плавающие, или качающиеся фундаменты – как правило, экспериментальные в строительстве частных домов не используются.

В зависимости от характеристик слоев почвы и нагрузки на них происходят следующие явления, которые получили название фаз:

  • Фаза, при которой происходят равнонаправленные упругие деформации, при этом векторы распределения нагрузок и их сила одинаковы;
  • Комбинированная фаза, при которой начинают происходить местные сдвиги, которые перераспределяют силу воздействия на почву и ее слои;
  • Фаза сдвигов и начала уплотнения боковых карманов, хотя ее-то можно назвать не началом, а логическим продолжением предыдущего этапа. Просто в данном случае эти карманы заявляют о себе как вполне самостоятельные структуры, способные влиять на расчетные величины;
  • Этап (или фаза) выпора. На этом этапе грунт под опорами уплотняется настолько, что и сам оказывает выраженное давление на глубжележащие слои. Это фаза образования ядра бокового уплотнения;

Практическое применение

Теория без практики мертва, поэтому любая инструкция будет полезна только в случае применения всего этого на практике. Так вот о ней родимой, о практике – последние две фазы характерны для многоэтажных домов со свайной системой фундамента и комбинированной (сваи + железобетонные блоки).

Поэтому в данном материале практическое применение этого материала не отображается. Остаются первые три фазы, которые могут быть полезны в практическом смысле, так как они позволяют вычислить необходимую площадь закладываемого фундамента.

Читайте также:  Чем засыпать траншею под фундаментом

Итак, эта величина должна быть больше произведения:

  • Коэффициента надежности равного 1.2 и определенного экспериментальными и расчетными путями;
  • Расчетной нагрузки в кг. В данном случае учитывается не только вес стен, перекрытий, крыши, но даже прогнозируемого слоя снега на крыше;
  • Расчетного сопротивления грунта глубиной до 2 метров, которое есть в специальных таблицах.

К сведению!
При проведении расчетных работ обратите внимание на то, что один и тот же материал, имеющий разные плотности и разные степени влажности (сухой, мокрый), имеет и разную величину сопротивления.
Этот показатель будет актуален для районов с высоким уровнем грунтовых вод.

  • Полученное произведение необходимо разделить на так называемый коэффициент условий работы, который также находится из таблиц и составляет для глины – 1.0 – 1.2;
  • Для песка – 1.2 – 1.4. Разница в коэффициентах зависит от вида породы.

Еще немного теории

Ошибки в расчетах могут привести к различным аварийным явлениям – осадкам фундамента, которые требуют немедленного реагирования. Но существуют и естественные осадки.

Осадка основания фундамента вполне физическое явление, на которое также производятся поправки, при калькуляции фундаментов жилых зданий. Об этом немного подробнее.

А начнем с разрушительных явлений:

  • Прогибы и выгибы фундамента. Это явление, которое возникает вследствие неравномерности осадки основания. Неравномерная нагрузка, при котором дуга растяжения в первом случае будет находиться у фундамента (прогиб), во втором случае у кровли (выгиб);
  • Сдвиг. Это движение фундамента в вертикальной плоскости за счет различных явлений, чаще сейсмического характера;
  • Крен. Практически вариант Пизанской башни, при этом многоэтажная конструкция отклоняется в сторону всей массой. Характерен для многоэтажных строений. Крен опасен падением и разрушением всего здания;
  • Перекос – проваливание одной из основ фундамента, в результате чего возникает смещение вниз всей конструкции длинного здания. Яркий пример этого явления осадка свайного фундамента подмытого водой в результате ошибок в проектировании сливов или других причин;
  • Горизонтальные смещения и закручивание. Достаточно редкие виды деформаций чаще связанные с сейсмическими и геофизическими явлениями.

Причины неравномерных, аварийных осадок следующие:

  • Основания по своей структуре неоднородны, что не было учтено при постройке дома;

И снова практическое применение

Кроме ужасов предыдущего раздела существуют вполне мирные и прогнозируемые осадки фундамента под расчетными аргументами и фактами. Введены даже предельно допустимые осадки фундаментов для их различных видов.

  • Здания на железобетонных конструкциях могут давать осадку до 8 см;
  • Строения, использующие стальные сваи для опоры – до 12 см;
  • Для деревянных и сборно-щитовых строений барачного типа максимальная осадка до 15 см.

Строительная мысль также не стоит на месте и предлагает различные методы определения расчетной осадки строений для различных типов почв. На данный момент времени только официально разрешенных к использованию методик существует около 20.

С целью экономии времени и места в мозгах мы их не приводим. Хочется только сказать, что достаточно часто производится определение осадки фундамента методом послойного суммирования.

Расчет осадки свайного фундамента методом послойного суммирования и ленточного фундамента будут иметь отличия, так памятуя из вышесказанного о разных фазах сдвигов грунта, на сваи придется вводить поправки.

Совет!
В строительных нормах и правилах вы можете найти пример-расчет осадки фундамента методом послойного суммирования и провести расчеты своими руками.
Но дело в том, что, несмотря на данные расчеты и обилие программ позволяющих это сделать в интернете, эксперты склоняются к мысли, что расчеты необходимо делать специалистам и в привязке к конкретным условиям.
В противном случае цена будет слишком высока.

В заключение

Инженерные расчеты не так просты, как кажутся, даже построение эпюр требует знаний и навыков, поэтому самодеятельность в данном случае не приветствуется, особенно в вопросах проблемных грунтов. Видео в этой статье также предлагает свое видение проблемы.

Источник

Осадка фундамента: особенности оснований и виды нагрузок

Дата публикации: 13 января 2019

Автор: Всеволод Рублев

Целью написания настоящей статьи послужили частые вопросы наших клиентов. К сожалению, многие по-прежнему считают, что фундамент представляет собой монолитные блоки или столбы, удерживающие конструкцию «в отрыве от земли». И чем массивней и прочней фундамент, тем якобы надежнее строение. Таким образом он расценивается как некая отдельная конструкция, которая изготавливается по проверенному типовому шаблону. И которую можно установить где угодно, придав ей дополнительную прочность и усиление. Это не так. Дальше мы расскажем почему.

СОДЕРЖАНИЕ

Основа здания или строения – это грунт. А фундамент выполняет функцию посредника, сообщая грунту сумму нагрузок. Поэтому крайне важно понимать какая почва расположена на месте возведения постройки и какие у нее свойства. Изучением типов, свойств и поведения почвы при нагрузках занимается инженерная наука – механика грунтов. Основным свойством поведения грунтов является осадка. Методики расчета осадки позволяют выполнять расчеты фунд-ов, подбирать для них материал, прогнозировать срок эксплуатации здания, учитывать внешние факторы и дополнительные воздействия на сооружение в процессе эксплуатации. Механика грунтов наука точная, и понятна для инженеров, строителей, геологов. Она изобилует формулами и узкоспециальными терминами, разобраться в которых любителю не просто. Поэтому в статье мы сделаем попытку объяснить правила, методики и принципы на которых основывается современное фундаментостроение. Простым и доступным для понимания языком. Дадим определение таким понятиям как: осадка, просадка, основание, предельное состояние, способ послойного суммирования, эквивалентный слой, полупространство, САПР-платформа, CAD система, и многим другим.

Особенности грунта оснований

Основание фундамента – это массив грунта, на который опирается фундамент. Через фундамент оно воспринимает нагрузки от здания. Со временем постоянно действующие нагрузки вызывают в нем напряженность. А при достижении некоторого критического значения напряженность в основ-ии приводит к его деформации. Взаимодействие основ-я с фунд-ом вызывает деформации уже в нем, а тот передает их остальным конструкциям здания. Таким образом, основание должно иметь необходимый запас прочности на весь период эксплуатации дома, давать равномерную осадку, быть устойчивым к дополнительным нагрузкам и воздействиям. Основания бывают естественными и искусственными. Они отличаются по структуре: слоистые или однородные. Естественные основания – это типы грунтов, обладающие достаточной несущей способностью без усиления. Искусственные грунты – слабые, они не способны в естественном состоянии нести требуемые нагрузки, обладают неравномерными и значительными осадками. Поэтому их необходимо искусственно укреплять.

Что такое осадка фундамента и что на нее влияет?

Грунт состоит из разных частиц, отличных по химическому составу, размеру и прочности – зёрен. Пространство между зернами заполнено воздухом и водой. Прослойка почвы между фунд-ом и основ-ем испытывает сильное давление на сжатие. В результате такого сжатия грунт равномерно уплотняется и здание дает «осадку».

Что такое осадка фундамента?

Осадкой называют процесс постепенного погружения здания в землю за счет уплотнения слоя почвы между подошвой фунд-та и основ-ем. Осадка здания не изменяет структуру грунта. И это отличает ее от процесса просадки.

На степень осадки влияет неоднородность грунта, различное содержание в нем воды и воздуха, наличие примесей, неравномерная деформация, глубина промерзания, химические процессы в почве. Если осадка происходит неравномерно с изменением структуры грунта, то ее называют – просадкой.

Читайте также:  Виды бетона под фундамент

Просадка является разрушительным процессом и свидетельствует о серьезной ошибке, допущенной в процессе проектирования или строительства здания. Во избежание просадок необходимо придерживаться основных правил, определенных в СНиП.

Причины появления осадки

Главная причина появления осадки – это уплотнение грунта основания под весом здания. Уплотнение происходит за счет сокращения свободного пространства между частицами. Процесс уплотнения называется сжатием. Сжатие грунта возникает при некоторых условиях, оказывающих на него воздействие. Степень сжатия и деформации рассчитывается по специальным формулам, по принципу: деформации в грунте вызванные весом конструкции должны превышать деформации от собственного веса. Иными словами, напряжение, передаваемое от фундамента к основ-ю должно превышать собственное напряжение в самом основ-ии.

Методы расчета осадки

Расчет осадки начинают с определения предельных состояний. Для этого используют две группы характеристик. Первая группа предельных состояний решает задачу по обеспечению прочности и устойчивости оснований, предотвращению опрокидывания и сдвига фундамента по подошве. Первая группа определяет несущие способности фунд-ов и основ-ий. Вторая группа ограничивает перемещение фунд-ов предельными значениями деформаций. Обеспечивает зданию равномерную и контролируемую ос-ку. Исключает появление просадок, кренов и трещин в следствии неравномерной осадки.

Осадки могут быть равномерными и неравномерными. К причинам неравномерной осадки относят неоднородность напряжений в грунте от здания и неравномерную сжимаемость грунтов в основании. При расчете учитывают следующие виды деформаций: осадку, просадку, подъем, оседание, горизонтальное перемещение. Далее, мы рассмотрим методы расчета осадки способом послойного суммирования и способом эквивалентного слоя. И не сильно углубляясь в техническую часть с формулами сравним их возможности.

Предельное состояние – неудовлетворительное состояние конструкций здания, при котором невозможна его эксплуатация.

Способ послойного суммирования

Способ послойного суммирования применяется для расчета ос-ки слоистых оснований и считается основным расчетным методом СНиП по их определению. В основу способа положен принцип линейной деформации сплошной среды, основанной на законе Гука для одноосного сжатия.

Условия и допущения при использовании метода:

Грунт в основ-ии сплошное однородное тело

На тело действует линейная вертикальная нагрузка

Тело подвержено вертикальным напряжениям и деформациям

Боковое расширение и горизонтальные напряжения слишком малы

Деформация рассматривается только в пределах сжимаемой толщи

Деформация ниже уровня активных слоев не рассчитывается

Формула расчета осадки способом послойного суммирования:

Принцип способа послойного суммирования: толщу почвы подверженную сжатию разделяют на несколько слоев. Такие слои называются активными. Для каждого активного слоя определяется вертикальное напряжение от собственного веса. Результаты суммируются.

Метод послойного суммирования можно считать универсальным способом. Он достаточно прост и понятен, но обладает низкой точностью и основан на допущениях. Данный метод применяют для расчета сравнительно небольших фунд-ов малой площади. Не подходит для основ-ий, пласты которых образованы плотными слабо сжимаемыми грунтами.

Способ эквивалентного слоя

Способ эквивалентного слоя применяется для расчета осадки слоистых и однородных оснований. Впервые был сформулирован и применен русским советским ученым Николаем Александровичем Цытовичем. Его метод позволяет определять ос-ку с учетом ограниченного бокового расширения и рассчитывать ее протекание во времени. Эквивалентным слоем называют такую толщу почвы, ос-ка которой при сплошной и равномерной нагрузке на ее поверхность равна ос-ке грунтового полупространства.

Условия и допущения при использовании метода:

Основ-е в пределах полупространства однородно

Грунт является линейно деформируемым телом

Деформации в пределах полупространства определяют по теории упругости

Мощность эквивалентного слоя зависит от коэффициента бокового расширения, формы и размеров фунд-та

Формулы расчета осадки способом эквивалентного слоя:

для однородного основ-я

для слоистого основ-я

Принцип способа эквивалентного слоя: на основании теоремы о среднем коэффициенте фильтрации и относительной сжимаемости основ-я, привести сложную пространственную задачу к одномерной плоскости, к эквиваленту. Определить мощность эквивалентного слоя.

Для однородных грунтов способ является строгим решением, применяемым как теория упругости. Для слоистых метод приближенный. Способ эквивалентного слоя Цытовича находится между методом послойного суммирования и строгими аналитическими решениями. Он подходит для решения большинства стандартных задач при условии, что площадь подошвы менее 50 м 2

Полупространство – это геометрическая фигура, ограниченная гиперплоскостью в пространстве для которой выполняется ряд условий.

Допустимая величина осадки

Допустимую величину осадки рассчитывают в индивидуальном порядке по предельным состояниям оснований. Величина допустимой осадки – это совокупность следующих факторов:

коэффициентов надежности
характеристик грунтов
нагрузок, сопротивлений
напряжений, деформаций
геометрических параметров

Нормативная осадка фундамента – регламентируется проектными данными, на основ-ии инженерных расчетов и геологических изысканий. Максимальная осадка определяется предельным состоянием основания.

Государственные стандарты, нормы и правила СНиП 2.02.01-83 задают параметры и коэффициенты, которые необходимо использовать при расчетах. Не существует готовых решений, которые без требуемой компетенции можно с легкостью применять при самостоятельном проектировании и строительстве. Нормативные и расчетные значения характеристик грунтов определяются в СП 22.13330.2011 для сооружений различных классов и уровня ответственности. Один из трех классов сооружения: КС-1, КС-2, КС-3, устанавливает ГОСТ 27751-2014 .

Виды нагрузок на фундаменты

Нагрузки подразделяют на постоянные и временные. К постоянным нагрузкам относят вес конструкций, давление почвы, давление грунтовых вод. Временные нагрузки бывают длительного воздействия, кратковременного и особого. Длительными временными нагрузками принято считать вес оборудования и материалов внутри здания. К кратковременным нагрузкам относят климатические и сезонные воздействия (снег, дождь, ветер), а также прочие нагрузки, действующие непродолжительное время. Особое воздействие на здание и основание оказывают сейсмическая активность земной коры, геологические взрывы, просадка основания при затоплении, близость здания к объектам инфраструктуры (метро, железная дорога, аэропорт, завод и пр.).

Виды постоянных нагрузок на фундаменты могут быть нормативными и расчетными. Если для нагрузки имеется нормативное значение, то умножая его на коэффициент надежности получают расчетное значение. Коэффициенты надежности по нагрузке для различных предельных состояний и расчетных ситуаций отличаются. Временные нагрузки, зависящие от территориальных климатических условий, допускается определять по расчетному периоду их повторяемости. Значения кратковременных нагрузок устанавливают с учетом допустимого времени нарушения условий нормальной эксплуатации здания. Особые нагрузки устанавливают в соответствующих нормативных документах СНиП II-7-81* СП 14.13330.2014.

Согласно СНиП 2.02.01-83 проектирование фунд-ов и основ-ий без соответствующего инженерно-геологического обоснования не допускается.

Глубина заложения фундаментов

Условия, определяющие глубину заложения фундаментов:

конструктивные особенности и назначение проектируемого сооружения

нагрузки и воздействия на фунд-ты сооружения

глубина прокладки инженерных коммуникаций

рельеф территории и глубина заложения фунд-ов примыкающих строений

инженерно-геологические условия на участке строительства

гидрогеологические условия и прогнозируемые изменения на площадке строительства

глубина сезонного промерзания почвы

Для районов, на которых глубина сезонного промерзания менее 2,5 м нормативное значение определяют по формуле:

Отдельно стоит рассмотреть последний пункт перечисленных условий, а именно глубину сезонного промерзания почвы. Ее нормативную глубину устанавливают по среднему значению максимального ежегодного промерзания в течение 10 лет. Те почвы, для которых данные многолетних наблюдений по промерзанию отсутствуют, определяют на основ-ии теплотехнических расчетов.

Фундамент неглубокого заложения располагают выше уровня примерзания на глубине 0,5-0,7 м. Подходит для пучинистых грунтов и малоэтажного строительства. Для устройства мелко заглубленного фундамента обычно применяют ленточный тип из железобетона. Может быть монолитным, сборным, или сборно-монолитным. Также, для фундамента неглубокого заложения используют столбчатый тип с ростверком или монолитную железобетонную плиту.

Читайте также:  Чертеж фундамента пилорамы р 63

При проектировании мелко заглубленных фунд-ов на пучинистых грунтах должен быть предусмотрен ряд мероприятий:

уменьшение влажности почвы

понижение уровня подземных вод

отвод поверхностных вод от здания

устройство дренажных конструкций

Для изготовления мелкозаглубленного фунд-та на сильнопучинистых грунтах следует применять тяжелый бетон класса В15. Марка бетона по морозостойкости и водонепроницаемости должна назначаться в соответствии с требованиями СНиП 2.03.01-84*.

Фундамент глубокого заложения располагают ниже уровня примерзания на глубине 0,7-2 м для ленточных и столбчатых типов, 2-15 и более метров для свайных. Глубоко заглубленные фундаменты способны решать практически любые по сложности задачи. Они сейсмически устойчивые, способны нести повышенные нагрузки, подходят для любых видов грунта. На фунд-ты глубокого заложения опираются многоэтажные конструкции. Благодаря тому, что опорная подошва фунд-ов глубокого заложения расположена ниже уровня промерзания она практически не испытывает вертикальное давление в процессе пучения грунта основания.

Применение фунд-ов глубокого заглубления оправдано в следующих условиях:

здание должно быть опущено на большую глубину

у конструкции здания слишком большой вес

слабые верхние слои и прочные подстилающие

высокое залегание грунтовых вод или большая глубина промерзания

здание передает основанию значительные нагрузки

Для изготовления мелкозаглубленного фундамента на сильнопучинистых грунтах следует применять тяжелый бетон класса В15. Марка бетона по морозостойкости и водонепроницаемости должна назначаться в соответствии с требованиями СНиП 2.03.01-84*.

Специальные фундаменты относятся к типу фунд-ов глубокого заложения. Применяют в особых условиях, в основном при строительстве тяжелых жилых или промышленных зданий. Специальные фунд-ты изготавливают одним из трех основных способов: методом погружения глубоких опор или опускных колодцев, заглублением стен в землю.

Глубокая опора – это готовая бетонная или металлическая свая диаметром от 1-го метра и длинной более 15-ти метров. Принцип устройства фундамента на глубоких опорах аналогичен свайному или столбчатому. Но отличается большим размером и диаметром опор. Погружение сваи в землю происходит постепенно, в процессе забивания ее мощным гидромолотом. Также, глубокие опоры изготавливают по принципу буронабивных свай, с армированием и бетонированием в скважине. При помощи низкочастотного вибропогружателя в скважину или в землю погружают тонкостенную трубчатую оболочку, затем заливают бетоном.

Опускной колодец – это железобетонное изделие в форме кольца или прямоугольника. На плоскости поверхности основ-я изготавливают первый такой элемент без заглубления. Затем начинают выемку грунта в его внутреннем пространстве. Под тяжестью собственного веса элемент фунд-та опускается в землю. После погружения на необходимую глубину, элемент наращивают сверху и продолжают выемку грунта. Этот процесс повторяется многократно, пока не будет достигнута расчетная глубина.

Заглубление стены в грунт – процесс создания железобетонной стены прямо в почве. Для этого по контуру будущего здания вырывается глубокая траншея высотой в несколько этажей. В траншею загружают арматурный каркас и заливают бетон. Далее во внутреннем пространстве производят выемку грунта, подготовку, уплотнение и заливку основания.

Устройство специальных фундаментов — это технологичный, дорогостоящий, трудо и ресурсоемкий процесс. Для частного домостроения применяется крайне редко. Решение о строительстве специального фунд-та принимается только на основ-ии технико-экономических расчетов (ТЭР).

Расчет осадки фундамента

Начиная с 80-х годов, расчет ос-ки фунд-та вручную по формулам, заменили расчетом в специализированных программных комплексах – САПР. Такое программное обеспечение позволяет создавать объемно-планировочные архитектурные решения. Проектировать и рассчитывать основания, конструкции, материалы, стоимость строительства, уровень механизации, и многое другое. САПР-платформа (английский аналог CAD) – это компьютерная программа, состоящая из множества связанных программных модулей. Ее широкий инструментарий позволяет решать обширный круг задач: дизайн, конструирование, проектирование, производство, строительство.

САПР или CAD system – система автоматизированного проектирования, представляет собой программный комплекс (ПК). Наиболее популярные программные комплексы: ArchiCAD, AutoCAD, ПК Лира, Компас, nanoCAD. Применение автоматизированных систем проектирования повышает точность расчетов, сокращает трудоемкость процесса вычислений, уменьшает сроки и себестоимость работ. Методы математического моделирования в САПР заменяют полностью или частично необходимость проведения полевых испытаний. Позволяют рассчитать экономическую целесообразность и эффективность для процесса изготовления или строительства конечного изделия. Далее мы предлагаем вам рассмотреть принципы моделирования на примере наиболее популярного программного комплекса Лира.

Рассмотрим определение величины ос-ки ленточного фундамента на примере расчета плоской рамы. Плоская рама – это стержневая металлическая или железобетонная конструкция, состоящая из вертикальных и горизонтальных элементов: колонн и ригелей, соединенных между собой под прямым углом или посредством шарниров. Плоская рама является расчетной схемой конструкции, ее механической моделью, заменяющей при расчетах саму эту конструкцию. Пример использования плоской рамы и расчета совместной работы каркаса с основанием можно посмотреть в видеоролике, ниже.

Расчет осадки ленточного фундамента в ПК Лира:

Программный комплекс Лира появился в 1960-х годах в СССР и разрабатывался для расчета конструкций. На сегодняшний день ПК Лира состоит из нескольких продуктов:

Лира-САПР: проектирование и расчет строительных конструкций различного назначения

Мономах-САПР: проектирование и расчет железобетонных и армокаменных конструкций многоэтажных зданий

ЭСПРИ: электронный справочник инженера, набор справочных и расчетных программ

Сапфир-3D: система архитектурного проектирования, формообразования и расчетов

В ПК «Лира-САПР» расчет основания производится на основе трехмерной модели грунта методом численного моделирования. А его объемная модель создается в системе «ГРУНТ», на основ-ии инженерно-геологических исследований. При статическом расчете конструкции для неоднородного основания используют несколько видов приближения (аппроксимации) конечных элементов: одноузловые, пластичные, объемные. Пользователь программного комплекса может выбирать и применять любой из них к своей модели. Также, в ПК есть возможность выбрать метод расчета осадки основ-я. Сравнительный анализ получаемых данных при различных вариантах моделирования позволяет определять характеристики почвы, выбирать подходящий тип фунд-та, рассчитывать максимальные значения осадки.

Пример определения величины осадки ленточного фундамента содержит большое количество формул, коэффициентов, значений и терминов. А сам процесс расчета может занимать от 5 до 20 и более страниц печатного текста. Углубиться в данный вопрос помогут тематические учебники и методические пособия, которые имеются в большом количестве в сети Интернет. Без знания основ 90% информации об определении ос-ки в любом программном комплексе не доступно для понимания. Расчет величины ос-ки неразрывно связан с общим расчетом основания и всех конструкций: фундамент, колонны, ригеля, перекрытия.

Подробный пример того, как выполняется расчет конструкций дома, сбор нагрузок, определяется ос-ка, смотрите здесь .

Как избежать чрезмерной осадки фундамента?

Расчет ос-ки основывается на понимании принципов механики грунтов, квалифицированном проектировании несущих конструкций, знании стандартов, норм и правил. Эти и другие объективные факторы в совокупности с субъективным опытом в конструировании и проектировании помогут избежать чрезмерной осадки фундамента, появления кренов и просадок во время строительства и эксплуатации здания.

В заключение статьи хочется отметить тот факт, что за последние десятилетия мало что изменилось в сферах гражданского и промышленного проектирования и строительства. Теоретические методы и принципы, разработанные в прошлые эпохи, остаются неизменны. Новые материалы, инструменты и технологии позволяют решать те же задачи в гораздо меньшие сроки, повышать эффективность и точность. А главное, новые технологии повышают уровень безопасности и срок эксплуатации объекта строительства.

Понравилась эта статья? Поделись важной информацией с друзьями в социальных сетях:

Источник