Меню

Инженерные методы расчета свайных фундаментов



Методика проектирования свайных фундаментов

Основные положения расчета. Расчет свайных фундаментов и их оснований производят по двум группам предельных состояний: по первой группе — по несущей способности грунта основания; по устойчивости грунтового массива со свайным фундаментом; по прочности материала свай и ростверков; по второй группе — по осадкам свайных фундаментов от вертикальных нагрузок; по перемещениям свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов; по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

Расчет по несущей способности грунтов основания заключается в выполнении условия N≤Fdk, где N — расчетная нагрузка, передаваемая на сваю, кН; Fd — несущая способность сваи; γk — коэффициент надежности.

Расчет свайных фундаментов по предельному состоянию второй группы (по деформациям) при действии вертикальных нагрузок производят исходя из условия s≤su, где s — деформация свайного фундамента (осадка и относительная разность осадок), определяемая расчетом; su — предельно допустимое значение деформации свайного фундамента, устанавливаемое заданием на проектирование или определяемое по СНиП 2.02.01-83* (табл. 9.2).

Расчет по перемещениям свайных фундаментов от действия горизонтальных нагрузок и моментов заключается в выполнении условий up≤uu; ψp≤ψu

up и uu — расчетные значения соответственно горизонтального перемещения, м, и угла поворота, рад, свайного фундамента; ψp и ψu — их предельные значения, устанавливаемые в задании на проектирование.

Расчет свай и ростверков по прочности материала производится в зависимости от применяемых материалов по соответствующим СНиПам и инструкциям.

Выбор конструкции свайного фундамента (вид свай, тип свайного фундамента и ростверка) производится исходя из конкретных условий строительной площадки, характеризуемых материалами инженерных изысканий, конструктивными и технологическими особенностями проектируемых зданий и сооружений, расчетных нагрузок, действующих на фундамент, а также на основе результатов сравнения возможных вариантов проектных решений. Тип и вид свай выбираются в зависимости от инженерно-геологических условий строительной площадки и имеющегося оборудования для устройства свайных фундаментов. Длина свай выбирается в зависимости от грунтовых условии строительной площадки и уровня расположения подошвы ростверка.

Определение числа свай в фундаменте и размещение их в плане. Центрально нагруженный свайный фундамент. Зная несущую способность сваи Fd и принимая, что ростверк обеспечивает равномерную передачу нагрузки на все сваи фундамента, необходимое число свай и в кусте определяют по формуле n=γkN01/Fd, где N01 — расчетная нагрузка на куст, кН. Число свай округляется в сторону увеличения до целого числа.

Сваи в кусте надо разместить таким образом, чтобы ростверк получился наиболее компактным, при этом сваи можно размещать по прямоугольной сетке или в шахматном порядке. Обычно расстояние между осями свай принимается а = 3d, а расстояние от крайнего ряда свай до края ростверка 1d.

После размещения свай в плане и уточнения габаритных размеров ростверка определяют нагрузку N, приходящуюся на каждую сваю, и проверяют условие , где Gf и Gg — расчетные нагрузки от веса фундамента и грунта на обрезах ростверка, кН.

Ширину ростверка ленточного свайного фундамента определяю по формуле bp=d+2co+(m-1)ср, где с=0,1 м — расстояние от края ростверка до грани сваи; m число рядов свай; ср — расстояние между рядами свай, м.

Железобетонные ростверки ленточных свайных фундаментом рассчитывают как неразрезные многопролетные балки в соответствии с требованиями СНиП 2.02.01-84.

Внецентренно нагруженный свайный фундамент. Предварительное число свай при внецентренном нагружении свайного фундамента определяют, так же как и при центральной нагрузке, по формуле n=γkN01/Fd, а затем увеличивают приблизительно на 20%. Расчетную нагрузку, приходящуюся на отдельную сваю, в общем случае, когда моменты действуют в направлении двух осей, •определяют по формуле внецентренного сжатия.

Подбор оптимального числа свай и расстояний между ними прирасчете внецентренно нагруженных свайных фундаментов значительно облегчается при использовании номограммы, разработанной институтом «Фундаментпроект». Номограмма составлена для кустов с числом свай от 3 до 26 и обеспечивает наиболее полное использование их несущей способности.

Расчет осадки свайных фундамента. Сложность определения осадки свайных фундаментов связана с тем, что они передают нагрузку на грунт основания одновременно через боковую поверхность и нижние концы свай, при этом соотношение передаваемых нагрузок зависит от многих факторов: числа свай в фундаменте, их длины, расстояния между сваями, свойств грунта и степени его уплотнения при погружении свай.

методы, основанные на полуэмпирических и эмпирических зависимостях;

методы, основанные на принципах механики грунтов и в той или иной степени упрощенные в целях их применения как для ручного счета, так и на ЭВМ;

Расчет осадок свайных фундаментов производится водится по методу условного массивного фундамента. Это означает, что сваи, грунт межсвайного пространства, а также некоторый объем грунта, примыкающего к наружным сторонам свайного фундамента, рассматриваются как единый массив АБВГ(рис. 11.17, а), ограниченный снизу плоскостью БВ, проходящей через нижние концы свай, а с боков — вертикальными плоскостями АБ и ВГ, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии с, равном c=htg(φII,mt/4), где h — глубина погружения свай в грунт, считая от подошвы ростверка, м; φII,mt — осредненное расчетное значение угла внутреннего трения грунта: φII,mt=∑φII,ihi/∑hi, где φII,i — расчетные значения углов внутреннего трения для отдельных пройденных сваями слоев грунта толщиной hi.

Размеры подошвы условного фундамента при определении его границ по этим правилам находим по формулам by=ab(mb-1)+d+2c; ly=al(ml-1)+d+2c, где ab и al — расстояния между осями свай соответственно по поперечным и продольным осям, м; mb и ml — количество рядов свай по ширине и длине фундамента (на рис.); d — диаметр круглого или сторона квадратного сечения сваи, м.

Расчет осадки свайного фундамента, как условного массивного выполняется теми же методами, что и расчет фундамента мелкого заложения. При этом также требуется выполнение условия, чтобы среднее давление рII по подошве условного фундамента не превышало расчетное сопротивление грунта основания R глубине, т. е. pII=NII/Ay≤R, где Ау=bу1у — площадь подошвы условного фундамента, м 2 ; NII расчетная нагрузка по второй группе предельных состояний NII=NII+NcII+NpII+NrII, где NII — расчетная нагрузка от веса здания или сооружении на уровне верхнего обреза фундамента, кН; NcII, NpII, NrII — вес соответственно сван, ростверка и грунта в объеме условного фундамента АБВГ, кН.

Осадка свайного фундамента определяется, как правило, методом элементарного суммирования.

Источник

Инженерные методы расчета свайных фундаментов

1 ИСПОЛНИТЕЛИ — Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова — институт АО «НИЦ «Строительство» (НИИОСП им.Н.М.Герсеванова)

(Измененная редакция, Изм. N 1).

2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) «Строительство»

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 24.13330.2010

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минрегион России) в сети Интернет

ВНЕСЕНЫ опечатки, опубликованные в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2011 г.

Опечатки внесены изготовителем базы данных

Изменения N 1, 2, 3 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2017 год; М.: Стандартинформ, 2019

Введение

Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.

Разработан НИИОСП им.Н.М.Герсеванова — институтом ОАО «НИЦ «Строительство»: д-ра техн. наук Б.В.Бахолдин, В.П.Петрухин и канд. техн. наук И.В.Колыбин — руководители темы; д-ра техн. наук: А.А.Григорян, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: А.Г.Алексеев, В.А.Барвашов, С.Г.Безволев, Г.И.Бондаренко, В.Г.Буданов, A.M.Дзагов, О.И.Игнатова, В.Е.Конаш, В.В.Михеев, Д.Е.Разводовский, В.Г.Федоровский, О.А.Шулятьев, П.И.Ястребов, инженеры Л.П.Чащихина, Е.А.Парфенов, при участии инженера Н.П.Пивника.

Изменение N 2 разработано институтом АО «НИЦ «Строительство» — НИИОСП им.Н.М.Герсеванова (руководители темы — д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский; исполнители — д-р техн. наук Н.З.Готман, д-р техн. наук Л.Р.Ставницер, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.А.Ковалев, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук О.А.Шулятьев, канд.техн. наук П.И.Ястребов) при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева.

Изменение N 3 к своду правил подготовлено АО «НИЦ «Строительство» — НИИОСП им.Н.М.Герсеванова (руководители темы — д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский, д-р техн. наук Н.З.Готман, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.В.Сёмкин, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук А.В.Шапошников, канд. техн. наук П.И.Ястребов, при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева).

(Измененная редакция, Изм. N 2, 3).

1 Область применения

Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений (далее — сооружений).

Свод правил не распространяется на проектирование свайных фундаментов сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе.

2 Нормативные ссылки

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент

ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент

ГОСТ 9463-2016 Лесоматериалы круглые хвойных пород. Технические условия

ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 19804-2012 Сваи железобетонные заводского изготовления. Общие технические условия

ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости

Читайте также:  Формула для расчета бетона под фундамент

ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 25100-2011 Грунты. Классификация

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

СП 14.13330.2018 «СНиП II-7-81* Строительство в сейсмических районах»

СП 16.13330.2017 «СНиП II-23-81* Стальные конструкции» (с изменением N 1)

СП 20.13330.2016 «СНиП 2.01.07-85* Нагрузки и воздействия» (с изменением N 1)

СП 21.13330.2012 «СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах» (с изменением N 1)

СП 22.13330.2016 «СНиП 2.02.01-83* Основания зданий и сооружений»

СП 25.13330.2012 «СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах» (с изменением N 1)

СП 26.13330.2012 «СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками» (с изменением N 1)

СП 28.13330.2017 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии» (с изменением N 1)

СП 35.13330.2011 «СНиП 2.05.03-84* Мосты и трубы» (с изменением N 1)

СП 38.13330.2018 «СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)»

СП 40.13330.2012 «СНиП 2.06.06-85 Плотины бетонные и железобетонные»

СП 41.13330.2012 «СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений»

СП 47.13330.2016 «СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения»

СП 58.13330.2012 «СНиП 33-01-2003 Гидротехнические сооружения. Основные положения» (с изменением N 1)

СП 63.13330.2012 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения» (с изменениями N 1, 2, 3)

СП 64.13330.2017 «СНиП II-25-80 Деревянные конструкции» (с изменением N 1)

СП 71.13330.2017 «СНиП 3.04.01-87 Изоляционные и отделочные покрытия»

СП 126.13330.2017 «СНиП 3.01.03-84 Геодезические работы в строительстве»

СП 131.13330.2012 «СНиП 23-01-99* Строительная климатология» (с изменениями N 1, 2)

Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

(Измененная редакция, Изм. N 1, 3).

3 Термины и определения

Термины с соответствующими определениями, используемые в настоящем СП, приведены в приложении А.

Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.

4 Общие положения

4.1 Основное назначение свай — это прорезка залегающих с поверхности слабых слоев грунта и передача действующей нагрузки на нижележащие слои грунта, обладающие более высокими механическими показателями. Свайные фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия их эксплуатации;

г) действующих на фундаменты нагрузок;

д) условий существующей застройки и влияния на нее нового строительства;

е) экологических требований;

ж) технико-экономического сравнения возможных вариантов проектных решений;

и) геоподосновой или инженерной цифровой модели местности (ИЦММ) с отображением подземных и надземных сооружений и коммуникаций;

к) технических условий, выданных всеми уполномоченными заинтересованными организациями.

Примечание — Допустимо применение свай для снижения величины осадки фундаментов или для устройства армирования грунтов.

(Измененная редакция, Изм. N 1, 2, 3).

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

Рекомендуется выполнять технико-экономическое сравнение возможных вариантов проектных решений с использованием критериев конструктивной и экономической эффективности.

(Измененная редакция, Изм. N 3).

4.3 При проектировании следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических, гидрогеологических и экологических условиях.

Данные о климатических условиях района строительства должны приниматься в соответствии с СП 131.13330.

(Измененная редакция, Изм. N 1).

4.4 Работы по проектированию свайных фундаментов следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1).

4.5 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751 и геотехническую категорию объекта строительства в соответствии с СП 22.13330.

В дополнении к требованиям СП 22.13330 при проектировании следующих видов свайных фундаментов должна назначаться геотехническая категория 3:

— свайных фундаментов при длине свай более 40 м;

— плитно-свайных фундаментов;

— фундаментов со сваями диаметром 1,5 м и более;

— свай, прорезающих хотя бы один слой скальных или полускальных грунтов.

(Измененная редакция, Изм. N 1).

4.6 Свайные фундаменты следует проектировать на основе результатов инженерных изысканий, выполненных в соответствии с требованиями СП 47.13330, СП 11-104 [2] и раздела 5 настоящего СП.

Выполненные инженерные изыскания должны обеспечить не только изучение инженерно-геологических условий нового строительства, но и получение необходимых данных для проверки влияния устройства свайных фундаментов на существующие сооружения и окружающую среду, а также для проектирования в случае необходимости усиления оснований и фундаментов существующих сооружений.

Проектирование свайных фундаментов без соответствующих достаточных данных инженерно-геологических изысканий не допускается.

4.7 При использовании для строительства вблизи существующих сооружений свай погружаемых или устраиваемых с применением динамических воздействий (забивка, вибропогружение, сваи-РИТ и др.) необходимо производить оценку влияния динамических воздействий на конструкции существующих сооружений, а также на находящиеся в них чувствительные к колебаниям машины, приборы и оборудование и в необходимых случаях предусматривать измерения параметров колебаний грунта, сооружений (в том числе подземных коммуникаций), а также подземных коммуникаций при опытном погружении и устройстве свай.

(Измененная редакция, Изм. N 1).

4.8 В программе мониторинга для зданий геотехнической категории 3, возводимых на свайных фундаментах, необходимо предусматривать проведение натурных измерений (мониторинг). Состав, объем и методы мониторинга устанавливают в соответствии с СП 22.13330.

Натурные измерения деформаций оснований и фундаментов должны предусматриваться при применении новых (не включенных в настоящий свод правил) конструкций свайных фундаментов, а также в случае если в задании на проектирование имеются специальные требования по проведению натурных измерений.

(Измененная редакция, Изм. N 1).

4.8а В свайных фундаментах зданий и сооружений, проектируемых в условиях геотехнической категории 3, не допускается применение бывших в употреблении стальных конструкций и их частей (армирующих элементов из металлопроката, металлических колец и т.д.).

(Введен дополнительно, Изм. N 1).

4.9 Свайные фундаменты, предназначенные для эксплуатации в условиях агрессивной среды, следует проектировать с учетом требований СП 28.13330, а деревянные конструкции свайных фундаментов — с учетом требований по защите их от гниения, разрушения и поражения древоточцами.

4.10 При проектировании и возведении свайных фундаментов из монолитного и сборного бетона или железобетона следует дополнительно руководствоваться СП 63.13330, СП 28.13330, а также соблюдать требования нормативных документов по устройству оснований и фундаментов, изоляционных и отделочных покрытий геодезическим работам, технике безопасности, правилам пожарной безопасности при производстве строительно-монтажных работ и охране окружающей среды.

(Измененная редакция, Изм. N 1).

4.11 Защиту стальных свай от коррозии допустимо выполнять цинкованием или путем окраски их поверхности составами на основе эпоксидных смол, стойкими к истиранию.

(Введен дополнительно, Изм. N 1, 3).

5 Требования к инженерно-геологическим изысканиям

5.1 Инженерно-геологические изыскания для проектирования свайных фундаментов должны назначаться в соответствии с требованиями СП 126.13330, [1], [3], национальных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Объемы и состав инженерных изысканий должны устанавливаться с учетом геотехнической категории объекта строительства в соответствии с СП 22.13330.

5.2 Для геотехнической категории 3 программу изысканий рекомендуется дополнять испытаниями грунтов прессиометрами и штампами (ГОСТ 20276), эталонными и натурными сваями (ГОСТ 5686). При применении свай новых конструкций (по специальному заданию проектной организации) в состав работ следует включать опытное погружение или устройство свай, с целью уточнения назначенных при проектировании длин и диаметров свай и режима погружения, а также натурные испытания этих свай статическими нагрузками.

5.3 При передаче на сваи выдергивающих, горизонтальных или знакопеременных нагрузок необходимость проведения опытных работ должна определяться в каждом конкретном случае, а объемы работ назначаться с учетом доминирующего воздействия.

5.4 Несущую способность свай по результатам полевых испытаний грунтов натурной и эталонной сваями и статическим зондированием следует определять в соответствии с подразделом 7.3.

5.5 Глубина инженерно-геологических выработок должна быть не менее чем на 5 м ниже проектируемой глубины заложения нижних концов свай при их рядовом расположении и нагрузках на куст свай до 3 МН и на 10 м ниже — при свайных полях размером до 10 10 м и при нагрузках на куст более 3 МН. При свайных полях размером более 10 10 м и применении плитно-свайных фундаментов глубина выработок должна превышать предполагаемое заглубление свай не менее чем на глубину сжимаемой толщи, но не менее половины ширины свайного поля или плиты и не менее чем на 15 м.

При наличии на строительной площадке слоев грунтов со специфическими свойствами (просадочных, набухающих, слабых глинистых, органоминеральных и органических грунтов, рыхлых песков и техногенных грунтов) глубину выработок определяют с учетом необходимости их проходки на всю толщу слоя для установления глубины залегания подстилающих прочных грунтов и определения их характеристик.

5.6 Обследование технического состояния фундаментов и конструкций реконструируемых зданий должно выполняться по заданию заказчика специализированной организацией. Оценку длины существующих свай в фундаментах реконструируемого здания рекомендуется осуществлять с использованием геофизических методов.

5.7 Технический отчет по результатам инженерно-геологических изысканий для проектирования свайных фундаментов должен составляться в соответствии с СП 47.13330 и [3].

Читайте также:  Арматурный каркас плитной фундамента

При наличии натурных испытаний свай статической или динамической нагрузкой должны приводиться их результаты. Результаты зондирования должны включать данные о несущей способности свай.

При применении свай-стоек должен быть определен показатель качества породы RQD для всех слоев скальных грунтов, которые прорезает свая, и для слоя, в котором расположен нижний конец сваи.

При проектировании свайных фундаментов для зданий с уровнем ответственности КС-3 или сваями длиной более 40 м для глинистых грунтов рекомендуется определять коэффициент переуплотнения грунта OCR (в том числе в пределах сжимаемой толщи под нижним концом свай).

Раздел 5 (Измененная редакция, Изм. N 1).

6 Виды свай

6.1 По способу заглубления в грунт различают следующие виды свай:

а) забивные и вдавливаемые (далее — забивные) железобетонные, деревянные и стальные предварительно изготовленные, погружаемые в грунт за счет вытеснения, а также путем установки в лидерные скважины при помощи молотов, вибропогружателей, вибровдавливающих, виброударных и вдавливающих устройств, а также железобетонные круглые полые сваи диаметром до 0,8 м, заглубляемые вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью (ГОСТ 19804);

б) сваи-оболочки железобетонные диаметром более 0,8 м, погружаемые вибропогружателями с выемкой грунта из их полости и заполняемые частично или полностью бетонной смесью, а также сваи в виде металлических труб, погружаемые с открытым нижним концом без выемки грунта;

в) набивные бетонные и железобетонные, устраиваемые в грунте путем укладки бетонной смеси в скважины, образованные в результате принудительного вытеснения — отжатия грунта;

г) буровые железобетонные, устраиваемые в грунте путем заполнения пробуренных скважин бетонной смесью или установки в них предварительно изготовленных железобетонных элементов;

д) винтовые сваи, состоящие как минимум из одной металлической винтовой лопасти (спирали) и трубчатого металлического ствола со значительно меньшей по сравнению с лопастью площадью поперечного сечения, погружаемые в грунт путем ее завинчивания в сочетании с регулируемым вдавливанием с лидерными скважинами или без них.

(Измененная редакция, Изм. N 1).

6.2 По условиям взаимодействия с грунтом сваи следует подразделять на сваи-стойки и висячие (сваи трения).

К сваям-стойкам следует относить сваи всех видов, опирающиеся на скальные и слабодеформируемые грунты, а забивные сваи, кроме того, на слабодеформируемые грунты (ГОСТ 25100), и передающие нагрузку на основание преимущественно по пяте сваи.

К висячим сваям (сваям трения) следует относить сваи всех видов, опирающиеся на деформируемые грунты и передающие нагрузку на основание боковой поверхностью и нижним концом.

(Измененная редакция, Изм. N 1, 3).

6.3 Забивные и вдавливаемые железобетонные сваи размером поперечного сечения 0,8 м включительно и железобетонные сваи-оболочки следует подразделять:

а) по способу армирования — на сваи и сваи-оболочки с ненапрягаемой продольной арматурой с поперечным армированием и на предварительно напряженные со стержневой или проволочной продольной арматурой (из высокопрочной проволоки и арматурных канатов) с поперечным армированием и без него;

б) по форме поперечного сечения — на сваи квадратные, прямоугольные, таврового и двутаврового сечений, квадратные с круглой полостью, полые круглого сечения;

в) по форме продольного сечения — на призматические, цилиндрические, с наклонными боковыми гранями (пирамидальные, трапецеидальные);

г) по конструктивным особенностям — на сваи цельные и составные (из отдельных секций);

д) по конструкции нижнего конца — на сваи с заостренным или плоским нижним концом, или объемным уширением (булавовидные) и на полые сваи с закрытым или открытым нижним концом или с камуфлетной пятой.

Примечание — Сваи забивные с камуфлетной пятой устраивают путем забивки полых свай круглого сечения с закрытым стальным полым наконечником с последующим заполнением полости сваи и наконечника бетонной смесью и устройством с помощью взрыва камуфлетной пяты в пределах наконечника. В проектах таких свай следует предусматривать указания о соблюдении правил производства буровзрывных работ.

(Измененная редакция, Изм. N 1).

6.4 Набивные сваи по способу устройства подразделяют на:

а) вытеснительные, устраиваемые путем погружения (забивкой, вдавливанием или завинчиванием) инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком (наконечником) или бетонной пробкой, с последующим извлечением этих труб по мере заполнения скважин бетонной смесью, в том числе после устройства уширения из втрамбованной сухой бетонной смеси;

б) виброштампованные, устраиваемые в пробитых скважинах путем заполнения скважин жесткой бетонной смесью, уплотняемой виброштампом в виде трубы с заостренным нижним концом или закрепленным на ней вибропогружателем;

в) в выштампованном ложе, устраиваемые путем выштамповки в грунте скважин пирамидальной или конусной формы с последующим заполнением их бетонной смесью.

(Измененная редакция, Изм. N 1).

6.5 Буровые сваи по способу устройства подразделяют на:

а) буронабивные сплошного сечения с уширениями и без них, бетонируемые в скважинах, пробуренных в глинистых грунтах выше уровня подземных вод без крепления стенок скважин, а в любых грунтах ниже уровня подземных вод — с закреплением стенок скважин глинистым раствором или инвентарными извлекаемыми обсадными трубами;

б) буронабивные с применением технологии непрерывного полого шнека;

в) баретты — буровые сваи, изготавливаемые технологическим оборудованием типа плоский грейфер или гидрофреза;

г) буронабивные с камуфлетной пятой, устраиваемые путем бурения скважин с последующим образованием уширения взрывом (в том числе электрохимическим) и заполнением скважин бетонной смесью;

д) буроинъекционные диаметром 0,15-0,35 м, устраиваемые в пробуренных скважинах путем нагнетания (инъекции) в них мелкозернистой бетонной смеси, а также устраиваемые полым шнеком или с использованием не извлекаемых буровых штанг;

е) буроинъекционные диаметром 0,15-0,35 м, выполняемые с уплотнением окружающего грунта путем обработки скважины по разрядно-импульсной технологии (серией разрядов импульсов тока высокого напряжения — РИТ);

ж) сваи-столбы, устраиваемые путем бурения скважин с уширением или без него, укладки в них омоноличивающего цементно-песчаного раствора и опускания в скважины предварительно изготовленных цилиндрических или призматических элементов сплошного сечения со сторонами или диаметром 0,8 м и более;

з) буроопускные сваи с камуфлетной пятой, отличающиеся от буронабивных свай с камуфлетной пятой (см. подпункт «г») тем, что после образования и заполнения камуфлетного уширения в скважину опускают железобетонную сваю.

(Измененная редакция, Изм. N 1).

6.5а (Введен дополнительно, Изм. N 1), (Исключен, Изм. N 3).

6.6 Применение свай с оставляемыми обсадными трубами допускается только в случаях, когда исключена возможность применения других решений конструкции фундаментов (при устройстве буронабивных свай в пластах грунтов со скоростью фильтрационного потока более 200 м/сут, при применении буронабивных свай для закрепления действующих оползневых склонов и в других обоснованных случаях).

При устройстве буронабивных свай в водонасыщенных глинистых грунтах для крепления стенок скважин допускается использовать избыточное давление воды не менее 0,5 атм при условии удаления места проведения работ от существующих объектов не менее 25 м (указанное требование не относится к случаю устройства свай с бурением под защитой инвентарных обсадных труб).

6.7 Железобетонные и бетонные сваи следует проектировать из тяжелого бетона по ГОСТ 26633.

Для нестандартизованных забивных железобетонных свай, а также для набивных и буровых свай необходимо предусматривать бетон класса не ниже В15, для забивных железобетонных свай с напрягаемой арматурой — не ниже В22,5.

6.8 Железобетонные ростверки свайных фундаментов следует проектировать из тяжелого бетона класса не ниже: для монолитных — В15, для сборных — В20.

Для опор мостов класс бетона свай и свайных ростверков следует назначать в соответствии с требованиями СП 35.13330, а для гидротехнических сооружений — СП 40.13330 и СП 41.13330.

6.9 Бетон для замоноличивания железобетонных колонн в стаканах свайных ростверков, а также оголовков свай при сборных ленточных ростверках следует предусматривать в соответствии с требованиями СП 63.13330, но не ниже класса В15.

Примечание — Для опор мостов и гидротехнических сооружений класс бетона для замоноличивания сборных элементов свайных фундаментов должен быть на ступень выше класса бетона соединяемых сборных элементов.

6.10 Марки бетона по морозостойкости и водонепроницаемости свай и свайных ростверков следует назначать, руководствуясь ГОСТ 19804.6, СП 63.13330, для мостов и гидротехнических сооружений — соответственно СП 35.13330 и СП 40.13330.

6.11 Деревянные сваи должны быть изготовлены из бревен хвойных пород (сосны, ели, лиственницы, пихты), соответствующих требованиям ГОСТ 9463, диаметром 22-34 см и длиной 6,5 и 8,5 м. Естественная коничность (сбег) бревен сохраняется. Применение деревянных свай для фундаментов капитальных зданий и сооружений допускается при расположении их голов ниже уровня подземных вод. Допускается применять конструкции с железобетонными элементами выше уровня подземных вод и деревянными элементами ниже их уровня.

(Измененная редакция, Изм. N 1).

6.12 Металлические сваи могут изготавливаться из стали, а также из высокопрочного чугуна. Допускается применение сталебетонных конструкций. При устройстве стальных трубчатых свай для геотехнических категорий 2 и 3 не допускается повторное применение труб, бывших в употреблении.

6.13 Допускается применение комбинированных свай, при устройстве которых использовано более двух технологий их устройства, в том числе с применением технологий струйной цементации и глубинного смешивания. Элементы закрепления грунта могут применяться для повышения несущей способности свай в виде:

— фрагмента закрепленного основания под пятой сваи и (или) отдельных закрепленных участков по боковой поверхности сваи;

— предварительно закрепленного грунтового массива, в который погружается заранее изготовленный элемент.

Допустима комбинация буровых или буронабивных свай с опиранием на закрепленный массив грунта, устроенный методом струйной цементации или глубинного смешивания.

6.12, 6.13 (Введены дополнительно, Изм. N 1).

7 Проектирование свайных фундаментов

7.1 Основные указания по расчету

7.1.1 Расчет свайных фундаментов и их оснований должен быть выполнен в соответствии с ГОСТ 27751 по предельным состояниям:

первой группы:

а) по прочности материала свай и свайных ростверков;

б) по несущей способности (предельному сопротивлению) грунта основания свай;

в) по потере общей устойчивости оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.), в том числе сейсмические, если сооружение расположено на откосе или вблизи него или если основание сложено крутопадающими слоями грунта. Этот расчет следует производить с учетом конструктивных мероприятий, предусмотренных для предотвращения смещения проектируемого фундамента;

второй группы:

а) по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок (см. подраздел 7.4);

Читайте также:  Фундамент по шведской технологии шведская плита

б) по перемещениям свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов (см. приложение В);

в) по образованию или чрезмерному раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

7.1.2 В расчетах оснований свайных фундаментов следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние подземных вод и их режима на физико-механические свойства грунтов и др.) на весь период эксплуатации.

Сооружение и его основание должны рассматриваться совместно, т.е. должно учитываться взаимодействие сооружения со сжимаемым основанием.

Расчетная схема системы «сооружение-основание» или «фундамент-основание» должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов, развитие областей пластических деформаций под фундаментом.

Расчет свайных фундаментов должен проводиться с построением математических моделей, описывающих механическое поведение свайных фундаментов для первого или второго предельного состояния. Расчетная модель может представляться в аналитическом или численном виде. При проведении расчетов несущей способности и осадок одиночных свай предпочтение следует отдавать табулированным или аналитическим решениям, приведенным в настоящем СП. Расчеты большеразмерных свайных кустов и комбинированных свайно-плитных фундаментов (КСП) следует, преимущественно, проводить численно.

При проектировании свайных фундаментов следует учитывать жесткость конструкций, объединяющих головы свай, что должно отражаться в расчетной модели. При этом при составлении расчетной модели должны также учитываться:

грунтовые условия площадки строительства;

гидрогеологический режим;

особенности устройства свай;

наличие шлама под нижним концом свай.

При проведении численных расчетов расчетная схема системы «ростверк — сваи — грунтовое основание» должна выбираться с учетом наиболее существенных факторов, определяющих сопротивление указанной системы. Необходимо учитывать продолжительность и возможное изменение во времени нагружения свай и свайных фундаментов.

Расчетная модель свайных фундаментов должна строиться таким образом, чтобы содержать погрешность только в сторону запаса надежности проектируемых надземных конструкций. Если заранее такая погрешность не может быть определена, необходимо проведение вариантных расчетов и определение наиболее неблагоприятных воздействий для надземных конструкций.

При проведении компьютерных расчетов свайных фундаментов следует учитывать возможные неопределенности, связанные с назначением расчетной модели и выбором деформационных и прочностных показателей грунтов основания. Для этого при проведении численных расчетов, определяющих возможное сопротивление одиночных свай, групп свай и свайно-плитных фундаментов, рекомендуется проводить сопоставление результатов расчета отдельных элементов расчетной схемы с аналитическими решениями, а также выполнять сопоставление альтернативных результатов расчета по различным геотехническим программам.

(Измененная редакция, Изм. N 1).

7.1.2а При проектировании свайных фундаментов допускается использовать как компьютерные программы, реализующие методики настоящего свода правил, так и численные решения с использованием апробированных геотехнических моделей. Программное обеспечение должно быть верифицировано (проверено).

(Введен дополнительно, Изм. N 1).

7.1.3 Нагрузки и воздействия, учитываемые в расчетах свайных фундаментов, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок следует принимать в соответствии с требованиями СП 20.13330, СП 22.13330.

7.1.4 Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.

7.1.5 Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете свайных фундаментов мостов и гидротехнических сооружений следует принимать согласно требованиям СП 35.13330; СП 40.13330; СП 38.13330 и СП 58.13330.

7.1.6 Расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и грунтов.

Расчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СП 63.13330, СП 16.13330, СП 64.13330, СП 35.13330 и СП 40.13330.

Расчетные значения характеристик грунтов следует определять в соответствии с ГОСТ 20522, расчетные значения коэффициентов постели грунта , окружающего сваю, следует принимать в соответствии с приложением В.

Расчетные сопротивления грунта под нижним концом сваи и на боковой поверхности сваи следует определять по указаниям подраздела 7.2 или путем расчета с использованием численного моделирования.

При наличии результатов полевых исследований, проведенных в соответствии с требованиями подраздела 7.3, несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний, учитывая рекомендации подраздела 7.3. При применении комбинированных свай их несущая способность должна определяться только на основании статических испытаний.

Для объектов, по которым не проводились испытания натурных свай статической нагрузкой, рекомендуется определять несущую способность грунта основания сваи несколькими из возможных способов, указанных в подразделах 7.2 и 7.3, учитывая при этом уровень ответственности сооружения.

(Измененная редакция, Изм. N 1).

7.1.7 Расчет свай и свайных ростверков по прочности материала должен производиться в соответствии с требованиями действующих правил по расчету бетонных, железобетонных, стальных и деревянных конструкций.

Расчет элементов железобетонных конструкций свайных фундаментов по образованию и раскрытию трещин следует производить в соответствии с требованиями СП 63.13330, для мостов и гидротехнических сооружений — также с учетом требований СП 35.13330 и СП 40.13330 соответственно.

7.1.8 При расчете свай всех видов по прочности материала сваю допускается рассматривать как стержень, жестко защемленный в грунте в сечении, расположенном от подошвы ростверка на расстоянии , определяемом по формуле

где — длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м;

— коэффициент деформации, 1/м, определяемый по рекомендуемому приложению Г*.
_________________
* Вероятно, ошибка оригинала. Следует читать «Приложение В». — Примечание изготовителя базы данных.
Если для буровых свай и свай-оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение , следует принимать (где — глубина погружения сваи или сваи-оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).

При расчете по прочности материала буроинъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации 5 МПа, расчетную длину свай на продольный изгиб в зависимости от диаметра свай следует принимать равной:

при 2 МПа

при 2 5 МПа .

В случае если превышает толщину слоя сильносжимаемого грунта , расчетную длину следует принимать равной 2 .

7.1.9 При расчете набивных, буровых свай и баретт (кроме свай-столбов и буроопускных свай) по прочности материала расчетное сопротивление бетона следует принимать с понижающим коэффициентом условий работы 0,85, учитывающим бетонирование в узком пространстве скважин и обсадных труб, и дополнительного понижающего коэффициента , учитывающего влияние способа производства свайных работ:

а) в глинистых грунтах, если возможны бурение скважин и бетонирование их насухо без крепления стенок при положении уровня подземных вод в период строительства ниже пяты свай, 1,0;

б) в грунтах, бурение скважин и бетонирование в которых производят насухо с применением извлекаемых обсадных труб или полых шнеков, 0,9;

в) в грунтах, бурение скважин и бетонирование в которых осуществляют при наличии в них воды с применением извлекаемых обсадных труб или полых шнеков, 0,8;

г) в грунтах, бурение скважин и бетонирование в которых выполняют под глинистым раствором или под избыточным давлением воды (без обсадных труб), 0,7.

Примечание — Бетонирование свай под водой или под глинистым раствором следует производить только методом вертикально перемещаемой трубы (ВПТ) или с помощью бетононасосов.

7.1.10 Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от сооружения, а предварительно изготовленных (забивных) свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3 (где — длина сваи).

При этом усилие в свае от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:

1,5 — при расчете по прочности;

1,25 — при расчете по образованию и раскрытию трещин.

В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимают равным единице.

7.1.11 Допускаемую нагрузку на сваю ( ) в составе фундамента или одиночную сваю следует определять исходя из условия:

где — расчетная нагрузка, передаваемая на сваю от наиболее невыгодного сочетания нагрузок, действующих на фундамент, определяемая в соответствии с 7.1.12;

— предельное сопротивление грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи и определяемая в соответствии с подразделами 7.2 и 7.3;

— коэффициент надежности по ответственности сооружения, принимаемый по ГОСТ 27751, но не менее 1;

— коэффициент надежности по грунту, принимаемый равным:

1,2 — если несущая способность сваи определена по результатам полевых испытаний статической нагрузкой;

1,25 — если несущая способность сваи определена расчетом по результатам статического зондирования грунта или по результатам динамических испытаний сваи, выполненных с учетом упругих деформаций грунта, а также по результатам полевых испытаний грунтов эталонной сваей или сваей-зондом;

1,4 — если несущая способность сваи определена расчетом с использованием таблиц свода правил, в том числе по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта;

1,4 (1,25) — для фундаментов опор мостов при низком ростверке, на висячих сваях (сваях трения) и сваях-стойках, а при высоком ростверке — только при сваях-стойках, воспринимающих сжимающую нагрузку независимо от числа свай в фундаменте;

1,5 — если несущая способность сваи определена расчетом с использованием компьютерных программ на основании численного моделирования.

Для фундаментов опор мостов и для гидротехнических сооружений при высоком или низком ростверке, подошва которого опирается на грунты с модулем деформации 5 МПа, и висячих сваях, воспринимающих сжимающую нагрузку, а также для любых сооружений при любом виде ростверка и висячих сваях и сваях-стойках, воспринимающих выдергивающую нагрузку, принимают в зависимости от числа свай в фундаменте:

Источник